cho các số thực x,y,z thỏa mãn x,y,z\(\ge\)1 và \(3\left(x+y+z\right)=x^2+y^2+z^2+2xy\)
Tìm giá trị nhỏ nhất của biểu thức: P=\(\frac{x^2}{\left(x+y\right)^2+x}+\frac{x}{z^2+x}\)
cho các số thực x,y,z thỏa mãn \(x^4+y^4+z^4+2x^2y^2z^2=1\). Tìm giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+z^2-\sqrt{2}|xyz|\)
Cho các số thực x,y,z thỏa mãn \(x^4+y^4+z^4+2x^2y^2z^2=1\). Tìm giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+z^2-\sqrt{2}|xyz|\)
P554.(Mức B)cho x,y,z là các số thực dương,thoả mãn x2+y2+z2=1,chứng minh rằng:\(\frac{1}{1+yz}\le\frac{\sqrt{2}}{x+y+z}.\)mình chưa biết giải.
Cho các số dương x, y, z thỏa mãn xyz = 1. Khi đó giá trị nhỏ nhất của biểu thức
P= \(\frac{\sqrt{1+x^2+y^3}}{xy}\) +\(\frac{\sqrt{1+y^3+z^3}}{yz}\)+\(\frac{\sqrt{1+z^3+x^3}}{zx}\)
Cho x,y,z là các số thực dương. chứng minh rằng:
\(\dfrac{xy^2\left(x+z\right)}{x+y}+\dfrac{yz^2\left(z+x\right)}{y+z}+\dfrac{zx^2\left(x+y\right)}{z+x}\ge3xyz\)
cho các số thực dương x,y,z. chứng minh rằng:
\(\frac{xy^2\left(x+z\right)}{x+y}+\frac{yz^2\left(z+x\right)}{y+z}+\frac{zx^2\left(x+y\right)}{z+x}\ge3xyz\)
cho a b c là 3 số thực dương
chưng minh: \(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\dfrac{3}{4}\)
Giari giúp em bài này với ạ !
cho 3 số dương x,y,z thoả mãn 4x^2+4y^2+z^2=1/2(2x+2y+z)^2 .Tìm giá trị lớn nhất của biểu thức:
P= 8x^3+8y^3+z^3/(2x+2y+2z).(4xy+2yz+2xz)