Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ILoveMath

\(Ghpt:\left\{{}\begin{matrix}x-\dfrac{1}{x^3}=y-\dfrac{1}{y^3}\\\left(x-4y\right)\left(2x-y+4\right)=-36\end{matrix}\right.\)

Nguyễn Văn A
22 tháng 12 2022 lúc 15:12

\(\left\{{}\begin{matrix}x-\dfrac{1}{x^3}=y-\dfrac{1}{y^3}\left(1\right)\\\left(x-4y\right)\left(2x-y+4\right)=-36\left(2\right)\end{matrix}\right.\)

\(Đk:\left\{{}\begin{matrix}x,y\ne0\\x\ne4y\\2x\ne y-4\end{matrix}\right.\)

\(x-\dfrac{1}{x^3}=y-\dfrac{1}{y^3}\)

\(\Rightarrow x-y+\dfrac{1}{y^3}-\dfrac{1}{x^3}=0\)

\(\Rightarrow x-y+\dfrac{x^3-y^3}{x^3y^3}=0\)

\(\Rightarrow x-y+\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^3y^3}=0\)

\(\Rightarrow\left(x-y\right).\dfrac{x^2+xy+y^2+x^3y^3}{x^3y^3}=0\)

\(\Rightarrow\left[{}\begin{matrix}x=y\\x^2+xy+y^2+x^3y^3=0\end{matrix}\right.\)

Với \(x=y\) . Thay vào (2) ta được:

\(\left(x-4x\right)\left(2x-x+4\right)=-36\)

\(\Leftrightarrow-3x.\left(x+4\right)=-36\)

\(\Leftrightarrow x\left(x+4\right)=12\)

\(\Leftrightarrow x^2+4x-12=0\)

\(\Leftrightarrow\left(x+2\right)^2-16=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\Rightarrow y=2\\x=-6\Rightarrow y=-6\end{matrix}\right.\)

Với \(x^2+xy+y^2+x^3y^3=0\) . Ta sẽ chứng minh trường hợp này vô nghiệm.

Có: \(\left(x+y\right)^2+x^3y^3-xy=0\)

\(\Rightarrow\left(x+y\right)^2+xy\left(xy+1\right)\left(xy-1\right)=0\left(3\right)\)

Với \(xy>1\Rightarrow VT\left(3\right)>0\Rightarrow ptvn\)

Với \(xy=1\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)

\(\Rightarrow x^2=-1\Rightarrow ptvn\)

Với \(1>xy\ge0\Rightarrow xy\left(xy+1\right)\left(xy-1\right)\le0\) (có thể xảy ra).

Với \(0>xy>-1\Rightarrow VT\left(3\right)>0\Rightarrow ptvn\)

Với \(xy< -1\Rightarrow xy\left(xy-1\right)\left(xy+1\right)\le0\) (có thể xảy ra).

Vì \(x,y\ne0\) nên ta có: \(\left[{}\begin{matrix}1>xy>0\\xy< -1\end{matrix}\right.\left('\right)\)

\(\left(2\right)\Rightarrow2x^2-xy+4x-8xy+4y^2-16y=-36\)

\(\Rightarrow2x^2+4x+4y^2-16y+36=9xy\)

\(\Rightarrow2\left(x^2+2x+1\right)+4\left(y^2-4y+4\right)+18=9xy\)

\(\Rightarrow2\left(x+1\right)^2+4\left(y-2\right)^2+18=9xy>18\)

\(\Rightarrow xy>2\left(''\right)\)

Từ \(\left('\right),\left(''\right)\) suy ra hệ vô nghiệm.

Vậy hệ phương trình đã cho có nghiệm \(\left(x,y\right)\in\left\{\left(2;2\right),\left(-6;-6\right)\right\}\)


Các câu hỏi tương tự
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
Nguyễn Văn Tài Tâm
Xem chi tiết
tranthuylinh
Xem chi tiết
DUTREND123456789
Xem chi tiết
DUTREND123456789
Xem chi tiết
Tuyết Ly
Xem chi tiết
Tuấn Nguyễn
Xem chi tiết
Xem chi tiết