Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ILoveMath

GHPT\(\left\{{}\begin{matrix}\sqrt{x+y}+\sqrt{x-y}=1+\sqrt{x^2-y^2}\\\sqrt{x}+\sqrt{y}=1\end{matrix}\right.\)

Monkey D. Luffy
9 tháng 11 2021 lúc 10:00

\(ĐK:x+y\ge0;x-y\ge0;x,y\ge0\)

\(PT\left(1\right)\Leftrightarrow\sqrt{x+y}-1+\sqrt{x-y}-\sqrt{x^2-y^2}=0\\ \Leftrightarrow\dfrac{x+y-1}{\sqrt{x+y}+1}+\dfrac{x-y-x^2+y^2}{\sqrt{x-y}+\sqrt{x^2-y^2}}=0\\ \Leftrightarrow\dfrac{x+y-1}{\sqrt{x+y}+1}+\dfrac{\left(y-x\right)\left(x+y-1\right)}{\sqrt{x-y}+\sqrt{x^2-y^2}}=0\\ \Leftrightarrow\left(x+y-1\right)\left(\dfrac{1}{\sqrt{x+y}+1}+\dfrac{y-x}{\sqrt{x-y}+\sqrt{x^2+y^2}}\right)=0\)

\(\Leftrightarrow x+y-1=0\left(\dfrac{1}{\sqrt{x+y}-1}+\dfrac{y-x}{\sqrt{x-y}+\sqrt{x^2+y^2}}>0\right)\)

\(\Leftrightarrow y=x-1\)

Thế vào \(PT\left(2\right)\Leftrightarrow\sqrt{x}+\sqrt{x-1}=1\left(x\ge1\right)\Leftrightarrow\sqrt{x}-1+\sqrt{x-1}=0\)

\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}+1}+\dfrac{x-1}{\sqrt{x-1}}=0\\ \Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x-1}}\right)=0\\ \Leftrightarrow x=1\Leftrightarrow y=0\)

Vậy ...


Các câu hỏi tương tự
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
huy tạ
Xem chi tiết