`(a+sqrt{ab})/(sqrta+sqrtb)`
`=(sqrta.sqrta+sqrta.sqrtb)/(sqrta+sqrtb)`
`=(sqrta(sqrta+sqrtb))/(sqrta+sqrtb)`
`=sqrta`
\(\dfrac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}\)
\(=\sqrt{a}\)
`(a+sqrt{ab})/(sqrta+sqrtb)`
`=(sqrta.sqrta+sqrta.sqrtb)/(sqrta+sqrtb)`
`=(sqrta(sqrta+sqrtb))/(sqrta+sqrtb)`
`=sqrta`
\(\dfrac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}\)
\(=\sqrt{a}\)
Chứng minh các đẳng thức sau:
a) \(\left(1-a^2\right):\left[\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1
+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\right]+1=\frac{2}{1-a}\)
b) \(\left(\sqrt{a}+\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a}{\sqrt{ab}+b}
+\frac{b}{\sqrt{ab}-a}-\frac{a+b}{\sqrt{ab}}\right)=\sqrt{b}-\sqrt{a}\)
c) \(\frac{\sqrt{a}+\sqrt{b}-1}{a
+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a
+\sqrt{ab}}\right)=\frac{\sqrt{a}}{a}\)
d) \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2=1\)
\(P=\left(\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}\right)\sqrt{\frac{1}{a}-\frac{1}{b}}\)
\(=\left(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{a-b}-\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{a-b}\right).\sqrt{\frac{b-a}{ab}}\)
\(=\frac{a-2\sqrt{ab}+b-a-2\sqrt{ab}-b}{a-b}.\sqrt{\frac{b-a}{ab}}\)
\(=\frac{-4\sqrt{ab}}{a-b}.\sqrt{\frac{b-a}{ab}}\)\(=\frac{-4\sqrt{ab}}{2017-2018}.\sqrt{\frac{2018-2017}{ab}}\)
\(=4\sqrt{ab}.\sqrt{\frac{1}{ab}}\)\(=\sqrt{\frac{16ab}{ab}}\)\(=4\)
Chứng minh :
\(B=\frac{\sqrt{a}+\sqrt{b}}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}.\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)=\frac{\sqrt{a}}{a}\)
Rút gọn biểu thức:
A= \(\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{3\sqrt{ab}}{a\sqrt{a}+b\sqrt{b}}\right).\left[\left(\frac{1}{\sqrt{a}-\sqrt{b}}-\frac{3\sqrt{ab}}{a\sqrt{a}-b\sqrt{b}}\right):\frac{a-b}{a+\sqrt{ab}+b}\right]\)
Thu gọn:
\(A=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
10 tikk
Rút gọn biểu thức:
A= \(\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{3\sqrt{ab}}{a\sqrt{a}+b\sqrt{b}}\right).\left[\left(\frac{1}{\sqrt{a}-\sqrt{b}}-\frac{3\sqrt{ab}}{a\sqrt{a}-b\sqrt{b}}\right):\frac{a-b}{a+\sqrt{ab}+b}\right]\)
Rút gọn biểu thức:
\(\left(\sqrt{a}+\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right)\div\left(\frac{a}{\sqrt{ab}+b}+\frac{b}{\sqrt{ab}-a}-\frac{a+b}{\sqrt{ab}}\right)\)
RÚT GỌN CÁC BIỂU THỨC SAU
\(A=\left(\sqrt{ab}+2\sqrt{\frac{b}{a}}-\sqrt{\frac{a}{b}+\sqrt{\frac{1}{ab}}}\right)\sqrt{ab}\)
\(B=\frac{\sqrt{a}+a\sqrt{a}-\sqrt{b}-b\sqrt{a}}{ab-1}\)
Rút gọn:
\(a,A=\sqrt{9\left(a+b\right)}-2\sqrt{16\left(a+b\right)}-3\sqrt{a+b}+\frac{1}{5}\sqrt{25\left(a+b\right)}\)
\(b,B=\frac{2ab\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{2ab\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(c,C=\frac{2ab}{a+\sqrt{ab}}+\frac{2ab}{b+\sqrt{ab}}\)
\(d,D=\frac{\frac{2ab\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{2ab\sqrt{b}}{\sqrt{a}+\sqrt{b}}}{\frac{2ab}{a+\sqrt{ab}}+\frac{2ab}{b+\sqrt{ab}}}\)
Giúp mình với.Thanks
B=\(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+-\right)\)Rút gọn biểu thức