\(=\frac{3\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)-\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{3\sqrt{x}-3-\sqrt{x}-1-\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{1}{\sqrt{x}-1}\)
x=\(24-16\sqrt{2}=4^2-2.4.\sqrt{8}+\left(2\sqrt{2}\right)^2=\left(4-2\sqrt{2}\right)^2\)
a) \(P=\frac{3}{\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}-5}{x-1}\)
\(P=\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-5}{x-1}\)
\(P=\frac{3\sqrt{x}-3-\sqrt{x}-1}{x-1}-\frac{\sqrt{x}-5}{x-1}\)
\(P=\frac{3\sqrt{x}-3-\sqrt{x}-1-\sqrt{x}+5}{x-1}\)
\(P=\frac{\sqrt{x}+1}{x-1}\)
vay \(P=\frac{\sqrt{x}+1}{x-1}\)
b) thay vao P ta duoc:
\(P=\frac{\sqrt{24-16\sqrt{2}}+1}{24-16\sqrt{2}-1}\)
\(P=\frac{\sqrt{\left(2\sqrt{2}\right)^2-2.2.4\sqrt{2}+4^2}+1}{\left(2\sqrt{2}\right)^2-2.2.4\sqrt{2}+4^2-1}\)
\(P=\frac{\sqrt{\left(2\sqrt{2}-4\right)^2}+1}{\left(2\sqrt{2}-4\right)^2-1^2}\)
\(P=\frac{2\sqrt{2}-4+1}{\left(2\sqrt{2}-4-1\right)\left(2\sqrt{2}-4+1\right)}\)
\(P=\frac{2\sqrt{2}-3}{\left(2\sqrt{2}-5\right)\left(2\sqrt{2}-3\right)}\)
\(P=\frac{1}{2\sqrt{2}-5}\)
vay \(P=\frac{1}{2\sqrt{2}-5}\)