(2048/2049+12345+875-7)x1/2016x0
Ta biết mọi số nhân với 0 đều bằng 0
=>(2048/2049+12345+875-7)x1/2016x0=0
(2048/2049+12345+875-7)x1/2016x0
Ta biết mọi số nhân với 0 đều bằng 0
=>(2048/2049+12345+875-7)x1/2016x0=0
\(\frac{12345\cdot67890-54321}{12344\cdot67890\cdot13569}\) ai nhanh mink tick
chiều mink phải nộp bài đó mấy bn
13X13X13+1:1-0+(112345678-12345):(87965-87965)=?
e,\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{42}\right)\)
\(\Rightarrow A=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}=4-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(\Rightarrow A=4-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)=4-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(\Rightarrow A=4-\left(\frac{1}{1}-\frac{1}{7}\right)=4-\frac{6}{7}=3\frac{1}{7}\)
Bai 1: Tinh
a) ( \(\frac{1}{3}\))-1 - (\(\frac{-6}{7}\))0 + ( \(\frac{1}{2}\))-2 . 2
b) \(\frac{2.5^{22}-9.5^{21}}{25^{10}}\): \(\frac{5.\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}\)
c) ( \(\frac{-4}{9}\))3. (\(\frac{3}{2}\))2. (\(\frac{9}{6}\))3
a,\(8x^3-12x^2+6x-5=0\Leftrightarrow8\left(x^3-\frac{3}{2}x^2+\frac{3}{4}x-\frac{1}{8}\right)-4=0\)
\(\Leftrightarrow8\left(x-\frac{1}{2}\right)^3=4\Leftrightarrow\left(x-\frac{1}{2}\right)^3=\frac{1}{2}\Leftrightarrow x=\frac{1}{\sqrt[3]{2}}+\frac{1}{2}\)
ta có \(\sqrt[3]{6x+1}=2x\Rightarrow8x^3=6x+1\Leftrightarrow8x^3-6x-1=0\) (*)
đặt \(x=t+\frac{1}{4t}\)
=> PT (*) <=>\(8\left(t+\frac{1}{4t}\right)^3-6\left(t+\frac{1}{4t}\right)-1=0\)
<=>\(8t^3+\frac{1}{8t^3}-1=0\Leftrightarrow64t^6-8t^3+1=0\Leftrightarrow\left(8t^3-\frac{1}{2}\right)^2+\frac{3}{4}=0\) (vô nghiệm )
a) \(x^3 + 1 = (x + 1)(x^2 - x + 1)\)
\(x^9 + x^7 - 3x^2 - 3 = x^7(x^2 + 1) - 3(x^2 + 1) = (x^2 + 1)(x^7 - 3)\).
Điều kiện của x để giá trị của biểu thức Q xác định là \(x \neq -1, x^7 \neq 3, x \neq -3, x \neq 4\).
b) \(Q = \left[\frac{x^7 -3}{x^3 + 1}.\frac{(x - 1)(x + 1)(x^2 - x + 1)}{(x^7 - 3)(x^2 + 1)} + 1 - \frac{2(x + 6)}{x^2 + 1}\right].\frac{(2x + 1)^2}{(x + 3)(4 - x)}\)
\(= \left[\frac{x^7 - 3}{x^3 + 1}.\frac{(x - 1)(x^3 + 1)}{(x^7 - 3)(x^2 + 1)} + 1 - \frac{2(x + 6)}{x^2 + 1}\right].\frac{(2x + 1)^2}{(x + 3)(4 - x)}\)
Điền số tiếp theo vào chỗ chấm.
\(\frac{1}{3};\frac{1}{7};\frac{1}{13};\frac{1}{21};\frac{1}{31};\frac{1}{43};........\)
1+12345+12345=?