EM CẦN GẤPPP
Cho (O) và (O') cắt nhau tại A,B.Qua A vẽ cát tuyến CAD.Chứng minh rằng
a)Góc CBD không đổi .
b)Từ C và D vẽ hai tiếp tuyến với (O) tại I.Chứng minh góc CID không đổi
EM CẦN GẤPPP,GẤPP LẮM RỒI
Cho (O) và (O') cắt nhau tại A,B.Qua A vẽ cát tuyến CAD.Chứng minh rằng
a)Góc CBD không đổi .
b)Từ C và D vẽ hai tiếp tuyến với (O) tại I.Chứng minh góc CID không đổi
Hai đường tròn (O) và (O’) cắt nhau tại A và B. Qua A vẽ cát tuyến CAD với hai đường tròn (C ∈ (O) ,D ∈ (O’)). Từ C và D vẽ hai tiếp tuyến với đường tròn.Chứng minh rằng hai tiếp tuyến này hợp với nhau một góc có số đo không đổi khi cát tuyến CAD quay xung quanh điểm A
Cho (O) và (O') cắt nhau tại A; B. Vé đường kính AC của (O), đường kính AD của (O').
a) Chứng minh: C, B, D thẳng hàng
b) Qua A vẽ cát tuyến bất kỳ cắt (O) và (O') tại E, F. Tứ giác CEFD là hình gì? Vì sao?
c) Chứng minh:\(\widehat{EBF}\)không đổi khi cát tuyến EAF quay quanh A.
d) Từ E, F vẽ xhai cát tuyến với (O) và (o'). Chứng minh: hai tiếp tuyến cùng hợp với nhau một góc không đổi
Hai đường tròn (O) và (O’) cắt nhau tại A và B. Qua A vẽ cát tuyến CAD với hai đường tròn (C ∈ (O) ,D ∈ (O’)). Chứng minh rằng khi cát tuyến quay xung quanh điểm A thì ∠ CBD có số đo không đổi
Từ điểm M nằm bên ngoài đường tròn (O), vẽ tiếp tuyến MA và cát tuyến MCB với A,B,C Î (O). Phân giác góc B A C ^ cắt BC tại D, cắt (O) tại N. Chứng minh:
a, MA = MD
b, Cho cát tuyến MCB quay quanh M và luôn cắt đưòng tròn. Chứng minh MB.MC không đổi
c, N B 2 = N A . N D
*Bài 1: Hai đường tròn (O) và (O') cắt nhau tại A và B. Đường thẳng qua A cắt đường tròn (O) tại điểm C và cắt đường tròn (O') tại điểm D
a) Chứng minh khi đường thẳng quay quanh A thì \(\widehat{CBD}\)có sđ không đổi
b) Từ C và D vẽ 2 tiếp tuyến với đường tròn. CMR góc tạo bởi 2 tiếp tuyến này có số đo không đổi khi cát tuyến CAD quay quanh A
*Bài 2: Từ điểm M ở ngoài đường tròn (O), kẻ tiếp tuyến MT (T là tiếp điểm) và cát tuyến MAB qua O ( A,B\(\in\)đường tròn, A ở giữa M và D). CM: \(\widehat{AMT}+\widehat{MTA}=90^o\)
1.Cho (O;R). Qua điểm M nằm trong đương tròn vẽ các dây CD và EF không đi qua O. Tiếp tuyến tại C và D của (O) cắt nhau ở A, tiếp tuyến tại E và F của (O) cắt nhau tại B. Chứng minh OM vuông góc với AB
2. Cho (O) và đường thẳng d không cắt (O). Gọi H là hình chiếu của (O) trên d. Từ H vẽ các cát tuyến HCD và HAB với (O) (C nằm giữa H và D, A nằm giữa H và B, các cát tuyến không đi qua O). Tiếp tuyến tại A của (O) cắt d tại M. Tiếp tuyến tại C của (O) cắt d tại M. Chứng minh ΔOMN cân
1.Cho (O;R). Qua điểm M nằm trong đương tròn vẽ các dây CD và EF không đi qua O. Tiếp tuyến tại C và D của (O) cắt nhau ở A, tiếp tuyến tại E và F của (O) cắt nhau tại B. Chứng minh OM vuông góc với AB
2. Cho (O) và đường thẳng d không cắt (O). Gọi H là hình chiếu của (O) trên d. Từ H vẽ các cát tuyến HCD và HAB với (O) (C nằm giữa H và D, A nằm giữa H và B, các cát tuyến không đi qua O). Tiếp tuyến tại A của (O) cắt d tại M. Tiếp tuyến tại C của (O) cắt d tại M. Chứng minh \(ΔOMN\) cân