dùng công thức \(\dfrac{2m}{a\left(a+m\right)\left(a+2m\right)}=\dfrac{1}{a\left(a+m\right)}-\dfrac{1}{\left(a+m\right)\left(a+2m\right)}\)để chứng tỏ rằng:
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{18.19.20}< \dfrac{1}{4}\)
Cho biểu thức \(A=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)...\left(1-\dfrac{1}{81}\right)\left(1-\dfrac{1}{100}\right)\)
Hãy so sánh A với \(\dfrac{11}{19}\)
a, Tính: M = \(1+\dfrac{1}{5}+\dfrac{3}{35}+...+\dfrac{3}{9603}+\dfrac{3}{9999}\)
b, Chứng tỏ: S = \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\left(n\in N,n\ge2\right)\)
M=\(\left(\dfrac{1}{2+2\sqrt{a}}+\dfrac{1}{2-2\sqrt{a}}-\dfrac{a^2+1}{1-a^2}\right)\left(1+\dfrac{1}{a}\right)\)
CM rằng giá trị m ko phụ thuộc vào a
Cho A=\(\left(\dfrac{1}{2^2}-1\right)\)\(\left(\dfrac{1}{3^2}-1\right)\)\(\left(\dfrac{1}{4^2}-1\right)\)...\(\left(\dfrac{1}{2013^2}-1\right)\)\(\left(\dfrac{1}{2014^2}-1\right)\) và B= \(-\dfrac{1}{2}\)
Hãy so sánh A và B
rút gọn biểu thức : A = \(\left(1+\dfrac{1}{3}\right).\left(1+\dfrac{1}{8}\right).\left(1+\dfrac{1}{15}\right)......\left(1+\dfrac{1}{2499}\right)\)
Tính:
a) A= \(\left(\dfrac{5}{6}-\dfrac{4}{5}\right).1\dfrac{1}{5}+\dfrac{3}{16}:\left(\dfrac{-1}{2}\right)^3\)
b) B= \(\dfrac{4}{17}.\left(7\dfrac{3}{4}-6\dfrac{1}{3}\right)+\left(5\dfrac{3}{4}-6.95\right):\left(-1\dfrac{3}{5}\right)\)
\(A=\left(1-\dfrac{1}{2^2}\right).\left(1-\dfrac{1}{3^2}\right).\left(1-\dfrac{1}{4^2}\right)....\left(1-\dfrac{1}{30^2}\right)\)
1) Tính tổng C = \(\left(1-\dfrac{1}{2}\right)\).\(\left(1-\dfrac{1}{3}\right)\).\(\left(1-\dfrac{1}{4}\right)\).....\(\left(1-\dfrac{1}{2022}\right)\)
2) Cho tổng A = \(\dfrac{1}{3}\) - \(\dfrac{2}{3^2}\) + \(\dfrac{3}{3^3}\) - \(\dfrac{4}{3^4}\) +...+ \(\dfrac{99}{3^{99}}\) - \(\dfrac{100}{3^{100}}\). Chứng tỏ rằng A < \(\dfrac{3}{16}\)