Cho đường tròn (O: R) có hai đường kính AB và CD vuông góc với nhau. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc AB tại H. Tia AC cắt HK tại I, tia BC cắt HK tại E, nối AE cắt đường tròn (O; R) tại F.
1. Chứng minh tứ giác BHFE là tứ giác nội tiếp.
2. Chứng minh: EF EA EC EB . . .
3. Tính theo R diện tích FEC khi H là trung điểm của OA.
4. Cho K di chuyển trên cung nhỏ AC. Chứng minh đường thẳng FH luôn đi qua một điểm cố định.
giúp mình ý 3 với ạ
Cho đường tròn O bán kính R, đường kính AB, OC vuông góc vs AB M thuộc nửa đường tròn O , M khác A,B. Tiếp tuyến của nửa đường tròn O tại M cắt OC và tiếp tuyến tại A của nửa đường tròn lần lượt tại D,E, AE cắt BD tại F. Chứng minh EA.EF=R^2
Bài 4: Cho đường tròn tâm O đường kính AC. Trên đoạn thẳng OC lấy điểm B và vẽ đường tròn O’ có đường kính BC. Gọi M là trung điểm của AB, qua M kẻ dây cung vuông góc với AB cắt đường tròn O tại D và E. Nối CD cắt đường tròn O’ tại I
a/ Chứng minh DAEB là hình gì?
b/ Chứng minh MI = MD và MI là tiếp tuyến của đường tròn O’
c/ Gọi H là hình chiếu của I trên BC. Chứng minh CH.MB= BH.MC
Mn giúp em với ạ, cảm ơn mn nhìu :>
Cho đường tròn (O; R), đường kính AB cố định. Gọi M là trung điểm đoạn OB. Dây CD vuông góc với AB tại M. Điểm E chuyên động trên cung lớn CD (E khác A). Nôi AE cắt CD tại K. Nối BE cắt CD tại H
a, Chứng minh bốn điểm B, M, E, K thuộc một đường tròn
b, Chứng minh AE.AK không đổi
c, Tính theo R diện tích hình quạt tròn giới hạn bởi OB, OC và cung nhỏ BC
Cho đương tròn (O;R), đường kính AB cố định. Gọi M là trung điểm của đoạn OB. Dây CD vuông góc AB tại M. Điểm E chuyển độn trên cung lớn CD(E khác A). Nối AE cắt CD tại K. Nối BE cắt CD tại H
a, C/M rằng 4 điểm B,M, E, K thuộc 1 dường tròn
b, C/M AE.AK không đổi
c, Tính theo R diện tích hình quạt tròn giới hạn bởi OB, OC và cung nhỏ BC
cho đường tròn (O;R) có hai đường kính AB và CD vuông góc. Gọi I là trung điểm OB. Nối CI cắt đường tròn (O;R) tại E. Nối AE cắt CD tại H, nối BD cắt AE tại K
a.Chứng minh BOHE là tứ giác nội tiếp
b. Chứng minh AH.AE=2R^2
c.Tính tan BAE
d.chứng minh OK vuông góc BD
BÀI 1 cho nửa đường tròn tâm o đường kính AB CD là dây bất kì khác AB kẻ AE và BF vuông góc với CD chứng minh CE=DF
BÀI 2 cho nữa đường tròn O đường kính AB trên AB lấy hai điểm C và D sao cho OC=OD .từ C và D kẻ hai tia song song nhau cắt nửa đường tròn tại E và F chứng minh EF vuông góc với CE và DF
Bài 3 cho đường tròn o có bán kính OA =11 cm điểm M thuộc OA và cách o là 7 cm qua M kẻ dây CD có độ dài 18 cm tính độ dài MC, MD
Bài 4 cho tam giác ABC cân nội tiếp đường tròn O
A chừng minh AO là đường trung trực của BC
B tính đường cao AH của tam giác ABC biết AC=40cm bán kình đường tròn O = 25 cm
Bài 5 cho đường tròn O đường kính AB dây CD vuông góc AB tại điểm M ,M thuộc OA
gọi I là một điểm thuộc OB .Các tia CI ,DI theo thứ tự cắt dường tròn tại E và F
A Cm tam giác ICD cân
gọi H,K theo thứ tự là chân các đường vuông góc kẻ từ O đến CE DF so sánh OH và OK
giúp mình với mình cảm ơn nhiều
Cho đường tròn (O; R), kính AB cố định. Gọi M là trung điểm của OB. Dây CD vuông góc với AB tại M. Điểm E chuyển động trên cung lớn CD. Nối AE cắt CD tại K. Nối BE cắt CD tại H.
a) C/m: AE.AK không đổi
b) Tính theo R diện tích hình quạt tròn giới hạn bởi OB, OC và cung nhỏ BC
c) C/m: tâm I của đường tròn ngoại tiếp tam giác BHK luôn thuộc một đường thẳng cố định.
Cho đường tròn (O) có hai đường kính AB và CD vuông góc với nhau. Gọi E là 1 điểm trên cung nhỏ AD ( E khác A, E khác D). Nối EC cắt OA tại F. Trên tia AB lấy điểm G sao cho AG = AC, tia CG cắt đường tròn (O) tại điểm thứ hai là H
1) CM góc CFG = góc CHE và Tứ giác EFGH nội tiếp
2) CM tiếp tuyến đường tròn (O) tại H song song với AC
3) Nối eb cắt od tại I. chứng minh af.ed/of.ea = căn 2 và OF/AF + OI/DI >= CĂN 2