Biết rằng 9x + 9–x = 23. Khi đó biểu thức A = 5 + 3 x + 3 - x 1 - 3 x - 3 - x = a b với a b là phân số tối giản và a , b ∈ ℤ . Tích a.b có giá trị bằng
A. 10.
B. 8.
C. -8.
D. -10.
Cho các số thực x,y thay đổi thỏa mãn log 2 sin x + 2 cos x + 2 = 2 cos x - sin x + 3 . Gọi - a b với a , b ∈ ℕ * , a b tối giản là giá trị nhỏ nhất của biểu thức P = 3 cos 3 x + sin 2 x - 5 cos x Tính T = a +b
A. T = 200
B. T = 257
C. T = 210
D. T = 240
Cho hai số thực a,b thỏa mãn đồng thời các đẳng thức 3 - a . 2 b = 1152 và log 5 a + b = 2 . Tính giá trị biểu thức P = a - b
A. -3
B. -9
C. 8
D. -6
cho hai số a,b là hai số thực đều lớn hơn 1. giá trị nhỏ nhất của biểu thức s=
\(\dfrac{1}{log_{b\sqrt[3]{a}}}\)+\(\dfrac{1}{log\sqrt[3]{ab^2}}\)
Xét các số phức z = a + b i (a, b ∈ R ) có môđun bằng 2 và phần ảo dương. Tính giá trị biểu thức S = [ 5 ( a + b ) + 2 ] 2018 khi biểu thức P = | 2 + z | + 3 | 2 - z | đạt giá trị lớn nhất
Cho ∫ 0 1 3 x + 3 - 10 ( x + 3 ) 2 d x = 3 ln a b - 5 6 , trong đó a, b là 2 số nguyên dương và a/b là phân số tối giản. Mệnh đề nào dưới đây đúng?
A. ab = – 5
B. ab = 12
C. ab = 6
D. ab = 5/4
Trong không gian Oxyz cho A (1;2;-1), B (3;1;-2), C (2;3;-3) và mặt phẳng (P): x-2y+2z-3=0. M (a;b;c) là điểm thuộc mặt phẳng (P) sao cho biểu thức MA²+MB²+MC² có giá trị nhỏ nhất. Xác định a+b+c.
A. -3
B. -2
C. 2
D. 3
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x)= x^3-3x^2+2 trên đoạn [-1,2] . Tính giá trị biểu thức P= M-2m A. 3√2-3 B. 2√2-5 C. 3√3-5 D. 3√3-3
Tính giá trị bằng số của biểu thức 9 log 3 2
A. 2 B. 4
C. 1/3 D. 1/2
Tính giá trị bằng số của biểu thức 9 log 3 2
A. 2 B. 4
C. 1/3 D. 1/2