Đồ thị hàm số y = x 3 − 2 m x 2 + m 2 x + n có tọa độ điểm cực tiểu là 1 ; 3 . Khi đó m+n bằng
A. 4
B. 1
C. 2
D. 3
Cho đồ thị (C). y = x 3 - x + 3 . Tiếp tuyến tại N(1;3) cắt (C) tại điểm thứ 2 là M ( M ≠ N ) .Tọa độ M là
A. M (2;9)
B. M (-2;-3)
C. M (-1;3)
D. M(0;3)
Cho đồ thị ( C ) y = x 3 - x + 3 Tiếp tuyến tại N(1;3) cắt (C) tại điểm thứ 2 là M ( M ≢ N ) Tọa độ M là
A. M(2;9)
B. M(-2;-3)
C. M(-1;3)
D. M(0;3)
Tìm m để đồ thị hàm số y = x 4 - 2 m + 1 x 2 + m có ba điểm cực trị A; B; C sao cho OA = BC , trong đó O là gốc tọa độ; A là điểm cực đại, B và C là hai điểm cực tiểu của đồ thị hàm số.
A. m = 2 ± 2 2
B. m = 2 ± 2
C. m = 2 ± 2 3
D. m = 2 + 2 2
Tìm m để đồ thị hàm số y = x 4 - 2 m + 1 x 2 + m có ba điểm cực trị A, B, C sao cho OA = OB trong đó O là gốc tọa độ, A là điểm cực đại, B và C là hai điểm cực tiểu của đồ thị hàm số
A. m = 2 ± 2 2
B. m = 2 ± 2
C. m = 2 ± 2 3
D. m = 2 + 2 2
Khi đồ thị hàm số y = x 3 - 3 m x + 2 có hai điểm cực trị A, B và đường tròn (C): ( x - 1 ) 2 + ( y - 1 ) 2 = 3 cắt đường thẳng AB tại hai điểm phân biệt M,N sao cho khoảng cách giữa M và N lớn nhất. Tính độ dài MN
A. MN= 3
B. MN=1.
C. MN=2.
D. MN=2 3
Đường thẳng d: y=x+m cắt đồ thị hàm số y = x - 1 x + 1 tại hai điểm phân biệt A, B sao cho O A 2 + O B 2 = 2 , O là gốc tọa độ. Khi đó m thuộc khoảng
A. - ∞ ; 2 - 2 2
B. 0 ; 2 + 2 2
C. 2 + 2 ; 2 + 2 2
D. 2 + 2 2 ; + ∞
Cho hàm số y = f ( x ) = x 3 + a x 2 + b x + c đạt cực tiểu bằng – 3 tại điểm x=1 và đồ thị hàm số cắt trục tung tại điểm có tung độ là 2. Tính đạo hàm cấp một của hàm số tại x= -3
A. f'(-3)= 0
B. f'(-3)= 2
C. f'(-3)= 1
D. f'(-3)= -2
Biết M(1;-6) là điểm cực tiểu của đồ thị hàm số y = 2 x 3 + b x 2 + c x + 1. Tìm tọa độ điểm cực đại của đồ thị hàm số đó.
A. N ( − 2 ; 11 ) .
B. N ( 2 ; 21 ) .
C. N ( − 2 ; 21 ) .
D. N ( 2 ; 6 ) .