Theo bài ra \(R_1//R_2//....//R_n\)
Ta có: \(\dfrac{1}{R_{tđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+...+\dfrac{1}{R_n}\)
Suy ra: \(\dfrac{1}{R_{tđ}}>\dfrac{1}{R_1}\Leftrightarrow R_{tđ}< R_1\)
\(\dfrac{1}{R_{tđ}}>\dfrac{1}{R_2}\Leftrightarrow R_{tđ}< R_2;...;\dfrac{1}{R_{tđ}}>\dfrac{1}{R_n}\Leftrightarrow R_{tđ}< R_n\)
Vậy: \(R_{tđ}< R_1,R_2,...,R_n\left(đpcm\right)\)