+ Tỉ lệ thuận
1. Công thức.
Hai đại lượng tỷ lệ thuận x và y liên hệ với nhau bởi công thức y = kx, với k là một hằng số khác ), (y tỉ lệ thuận với x theo hệ số tỉ lệ k).
2. Tính chất.
- Tỉ số hai giá trị tương ứng của hai đại lượng tỉ lệ thuận luôn không đổi và bằng hệ số tỉ lệ.
= ....= k
- TÍố hai hai giá trị bất kì của đại lượng này bằng tỉ số hai giá trị tương ứng của địa lượng kia.
+ Tỉ lệ nghịch
1, Công thức
Hai đại lượng tỉ lệ nghịch x và y liên hệ với nhau bởi công thức y = , với a là một số khác 0. Ta nói y tỉ lệ nghịch với x theo hệ số tỉ lệ a
2. Tính chất
- Tích của một giá trị bất kì của đại lượng này với giá trị tương ứng của đại lượng kia tương ứng của đại lượng kia luôn là một hằng số (bằng hệ số tỉ lệ).
x1y1 = x2y2 = x3y3 = …= a
- Tỉ số hai giá trị bất kì của đại lượng này bằng nghịch đảo của tỉ số hai giá trị tương ứng của đại lượng kia.
; .....
Hai đại lượng tỉ lệ thuận là đại lượng này thay đổi cùng tính chất với sự thay đổi của đại lượng kia .
tính chất:- Tỉ số hai giá trị tương ứng của hai đại lượng tỉ lệ thuận luôn không đổi và bằng hệ số tỉ lệ.
y1x1=y2x2=y3x3y1x1=y2x2=y3x3 = ....= k
- TÍ số hai hai giá trị bất kì của đại lượng này bằng tỉ số hai giá trị tương ứng của đại lượng kia.
y1y2=x1x2;y1y3=x1x3
*Tỉ lệ nghịch là mối tương quan giữa hai đại lượng, mà nếu tăng đại lượng này bao nhiêu lần thì đại lượng kia giảm bấy nhiêu lần
Tính chất
- Tích của một giá trị bất kì của đại lượng này với giá trị tương ứng của đại lượng kia tương ứng của đại lượng kia luôn là một hằng số (bằng hệ số tỉ lệ).
x1y1 = x2y2 = x3y3 = …= a
- Tỉ số hai giá trị bất kì của đại lượng này bằng nghịch đảo của tỉ số hai giá trị tương ứng của đại lượng kia.
1, Công thức
Hai đại lượng tỉ lệ nghịch x và y liên hệ với nhau bởi công thức y = axax, với a là một số khác 0. Ta nói y tỉ lệ nghịch với x theo hệ số tỉ lệ a
2. Tính chất
- Tích của một giá trị bất kì của đại lượng này với giá trị tương ứng của đại lượng kia tương ứng của đại lượng kia luôn là một hằng số (bằng hệ số tỉ lệ).
x1y1 = x2y2 = x3y3 = …= a
- Tỉ số hai giá trị bất kì của đại lượng này bằng nghịch đảo của tỉ số hai giá trị tương ứng của đại lượng kia.
x1x2=y2y1;x1x3=y3y1x1x2=y2y1;x1x3=y3y1; .....