12 x 3 y 2 z 2 – 18 x 2 y 2 z 4 = 6 x 2 y 2 z 2 . 2 x – 6 x 2 y 2 z 2 . 3 z 2 = 6 x 2 y 2 z 2 ( 2 x – 3 z 2 )
Vậy đơn thức điền vào chỗ trống là: 6 x 2 y 2 z 2
Đáp án cần chọn là: B
12 x 3 y 2 z 2 – 18 x 2 y 2 z 4 = 6 x 2 y 2 z 2 . 2 x – 6 x 2 y 2 z 2 . 3 z 2 = 6 x 2 y 2 z 2 ( 2 x – 3 z 2 )
Vậy đơn thức điền vào chỗ trống là: 6 x 2 y 2 z 2
Đáp án cần chọn là: B
câu 1 : kết quả phân tích đa thức 6 x2y - 12 xy2 là
A 6xy (x - 2y)
B 6 xy (x - y)
C 6xy ( x + 2y)
D 6xy (x + y)
câu 2 : điền đơn thức vào chỗ trống : 12x3y2z2 - 18x2y2z = .......(2x - 3z3)
A 6xy2z2
B 6x2y2z2
C 6y2z2
D 6x3y2z2
Bài 4: Chứng minh biểu thức không phụ thuộc vào biến
a, (y-5)(y+8)-(y+4)(y-1)
2, y\(^4\)-(y\(^2\)+1)(y\(^2\)-1)
3, x(y-z)+y(z-x)+z(x-y)
4, x(y+z-yz)-y(z+x-xz)+z(y-x)
5, x(2x+1)-x\(^2\)(x+2)+x\(^3\)-x+3
6, x(3x-x+5)-(2x\(^3\)+3x-16)-x(x\(^2\)-x+2)
Tính giá trị biểu thức:
a) A = 3 x 2 - 2 ( x - y ) 2 - 3 y 2 tại x = 4 và y = -4;
b) B = 4(x - 2)(x +1) + ( 2 x - 4 ) 2 + ( x + 1 ) 2 tại x = - 1 2 ;
c*) C = x 2 (y-z) + y 2 (z-x) + z 2 (x-y) tại x = 6, y = 5 và z = 4;
d*) D = x 2017 - 10 x 2016 + 10 x 2015 - . . . - 10 x 2 + l0x -10 với x = 9.
Làm tính chia:
a) [ 12 ( y - z ) 4 - 3 ( z - y ) 5 ] : 6 ( y - z ) 2 ;
b) [ 2 ( x - 2 y + z ) 3 + 4 ( 2 y - x - z ) 2 ] : (2z - 4y + 2x).
1.Cho x+y+z=0. CMR:
a) \(5\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)=6\left(x^5+y^5+z^5\right)\)
b) \(x^7+y^7+z^7=7xyz\left(x^2y^2+y^2z^2+z^2x^2\right)\)
c) \(10\left(x^7+y^7+z^7\right)=7\left(x^2+y^2+z^2\right)\left(x^5+y^5+z^5\right)\)
d) \(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
2. Tìm n∈ N để biểu thức sau là số nguyên tố
a) \(A=n^3-4n^2-4n-1\)
b) \(B=n^3-6n^2+9n-2\)
c) \(C=n^{1975}+n^{1973}+1\)
Cho x*y=3, x*z=4, y*z=6. Tính giá trị của biểu thức A=. 1/2*( x^2+y^2+z^2)
cho x y z thỏa mãn : x+y+z=6; x^2+y^2+z^2=12
tinh gtbt. P=(x-1)^2+(y-1)^6+(z-3)^2015
1)x^6+3x^5+4x^4+4x^3+4x^2+3x+1
2)(x+y+z)^2+(x-2)^2
3)(a-b)^3+(b-c)^3+(c-a)^3
4)10(x^7+y^7+z^7)=7(x^2+y^2+z^2)(x^5+y^5+z^5)
1)Phân tích thành nhân tử:
a. (((x^2)+(y^2))^2)((y^2)-(x^2))+(((y^2)+(z^2))^2)((z^2)-(y^2))+(((z^2)+(x^2))^2)((x^2)-(z^2))
b. ((x-a)^4)+4a^4
c. (x^4)-(8x^2)+4
d. (x^8)+(x^4)+1
e. x((y^2)-(z^2))+y((z^2)-(x^2))+z((x^2)-(y^2))
f. (8x^3)(y+z)-(y^3)(z+2x)-(z^3)(2x-y)
g. (12x-1)(6x-1)(4x-1)(3x-1)-5
2) Cho (a^3)+(b^3)+(c^3)=3abc và abc khác 0. Tính A=(1+a/b)(1+b/c)(1+c/a).
3) Rút gọn phân thức:
((x^3)+(y^3)+(z^3)-3xyz)/(((x-y)^2)+((y-z)^2)+((z-x)^2))
đơn thức M= 1/3 x^5 y^3 z^7 không chia hết cho đơn thức nào dưới đây:
A.3x^2 yz^5 B.5x^4 z^2 C.xyz D.1/3 x^5 y^3 z^6