\(\dfrac{x^2}{6}=\dfrac{24}{25}\)
\(\Rightarrow x^2=\dfrac{24.6}{25}=\dfrac{144}{25}\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{12}{5}\\x=-\dfrac{12}{5}\end{matrix}\right.\)
\(\dfrac{x^2}{6}=\dfrac{24}{25}\)
\(\Rightarrow x^2=\dfrac{24.6}{25}=\dfrac{144}{25}\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{12}{5}\\x=-\dfrac{12}{5}\end{matrix}\right.\)
\(\dfrac{x}{2}\)=\(\dfrac{y}{5}\)=\(\dfrac{z}{6}\) và x - y + z =24
\(\dfrac{x}{2}\)
\(\dfrac{6}{35}\) : ( x - \(\dfrac{1}{2}\) ) = \(\dfrac{-3}{25}\)
Thực hiện pháp tính :
25.(\(\dfrac{-1}{5}\)) + \(\dfrac{1}{5}\) - 2 . (\(\dfrac{-1}{2}\))\(^2\) - \(\sqrt{\dfrac{1}{4}}\)
Tìm x :
6 - | \(\dfrac{1}{2}\) - x | = \(\dfrac{2}{5}\)
a \(\dfrac{-4}{7}\) - \(\dfrac{5}{13}\) x \(\dfrac{-39}{25}\) + \(\dfrac{-1}{42}\) : \(\dfrac{-5}{6}\)
b \(\dfrac{2}{9}\) x [\(\dfrac{4}{45}\): ( \(\dfrac{1}{5}\) - \(\dfrac{2}{15}\)) + 1\(\dfrac{2}{3}\)] - \(\dfrac{-5}{27}\)
1.\(x=\dfrac{y}{6}=\dfrac{z}{3}và2x-3y+4z=24\)
2.\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}và5z-3x-4y=50\)
3.\(6x=10y=15zvàx+y-z=90\)
Tìm x,y,z biết:
a. \(x=\dfrac{y}{6}=\dfrac{z}{3}và2x-3x-4z=24\)
\(b.6x=10y=15z\) và \(x+y-z=90\)
\(c.\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}và5z-3x-4y=50\)
\(d.\dfrac{x}{4}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{3}vàx-y+100=z\)
tính giá trị lớn nhất của
A = -( x + 1 ) \(^2\)+ 5
tìm x
2. x - 0, 7 = 1, 3
x - √25 = \(\left(\dfrac{2}{5}-\dfrac{6}{5}\right)\)
\(\dfrac{3}{4}+\dfrac{1}{4}\) : x = \(\dfrac{2}{5}\)
Câu 1: Tìm x, biết:
a)\(x^2-\dfrac{16}{25}=0\) b)\(\dfrac{2}{5}-\left|\dfrac{1}{2}-x\right|=6\)
C2.Tính giá của biểu thức:
a)\(A=1\dfrac{5}{13}-0,25-\left(2\dfrac{5}{9}+\dfrac{18}{13}-\dfrac{1}{4}\right)\)
b)\(\dfrac{\dfrac{3}{5}.7^2-3.5^6+\dfrac{3}{5}.3^9}{\dfrac{3}{4}.7^2-\dfrac{3}{4}.5^7+\dfrac{3}{4}.3^9}\)