\(\dfrac{8}{9}+\dfrac{10}{99}=\dfrac{88}{99}+\dfrac{10}{99}=\dfrac{98}{99}\)
\(\dfrac{8}{9}+\dfrac{10}{99}=\dfrac{88}{99}+\dfrac{10}{99}=\dfrac{98}{99}\)
Tính hợp lý
\(A= (\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\) B= \(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}}{\dfrac{1}{9}+\dfrac{2}{8}+\dfrac{3}{7}+...+\dfrac{8}{2}+\dfrac{9}{1}})\)
Cho biểu thức :
A = \(\dfrac{4}{3}+\dfrac{10}{9}+\dfrac{28}{27}+....+\dfrac{3^{99}+1}{3^{99}}\)
Chứng minh rằng : A < 100
tính S=\(\dfrac{3}{4}\)*\(\dfrac{8}{9}\)*\(\dfrac{15}{16}\)*........*\(\dfrac{99}{100}\)
\(\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{99}{1}\)
\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)
94-\(\dfrac{1}{7}-\dfrac{2}{8}-\dfrac{3}{9}-...-\dfrac{94}{100}\)
\(\dfrac{1}{35}+\dfrac{1}{40}+\dfrac{1}{45}+...+\dfrac{1}{500}\)
giúp mik nha mik cần gấp
8. \(\dfrac{-5}{9}\) + \(\dfrac{8}{15}\) + \(\dfrac{-2}{11}\) + \(\dfrac{4}{-9}\) + \(\dfrac{7}{15}\)
9. \(\dfrac{2}{7}\) + (\(\dfrac{-2}{5}\) + \(\dfrac{5}{7}\))
10. \(\dfrac{7}{19}\). \(\dfrac{8}{11}\) + \(\dfrac{3}{11}\).\(\dfrac{7}{19}\)+\(\dfrac{-12}{19}\)
11. \(\dfrac{-5}{7}\).\(\dfrac{2}{11}\) + \(\dfrac{-5}{7}\).\(\dfrac{9}{11}\)
12. \(\dfrac{-5}{13}\) + \(\dfrac{5}{7}\) + \(\dfrac{20}{41}\) + \(\dfrac{-8}{13}\) + \(\dfrac{21}{41}\)
Giúp tớ với ạ! Tớ cảm ơn! Các cậu chỉ cần ghi đáp án cuối cùng thôi ạ! Cảm ơn các cậu<3
\((\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{9}+\dfrac{1}{10})\times x=\dfrac{1}{9}+\dfrac{2}{8}+\dfrac{3}{7}+...+\dfrac{8}{2}+\dfrac{9}{1}\)
b)\(\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{9}+\dfrac{1}{10}\right)x=\dfrac{1}{9}+\dfrac{2}{8}+\dfrac{3}{7}+...+\dfrac{8}{2}+\dfrac{9}{1}\)
Tính giá trị các biểu thức:
A=(-1)+(-5)+(-9)+...+(-101)
B=\(\dfrac{-5}{17}\).\(\dfrac{8}{19}\)+\(\dfrac{-12}{17}\). \(\dfrac{8}{19}\) - \(\dfrac{11}{19}\)
C=\(\dfrac{10}{1.6}\)+\(\dfrac{10}{6.11}\)+\(\dfrac{10}{11.16}\)+...+\(\dfrac{10}{2016.2021}\)
Bài 1:
a) Tính giá trị của biểu thức một cách hợp lí.
A=1+2-3-4+5+6-7-8+9+10-11-12+...-299-300+301+302
b) Cho A=1+4+42+43+...+499 , B=4100. Chứng minh rằng A<\(\dfrac{B}{3}\)
c) Rút gọn. B=\(\dfrac{1}{3}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{3^{99}}\)
Bài 2:
a) Tìm hai số nguyên tố có tổng của chúng bằng 601.
b) Chứng tỏ rằng \(\dfrac{21n+4}{14n+3}\) là phân số tối giản.
c) Tìm cặp số nguyên (x; y) biết: xy-2x+5y-12=0