\(\dfrac{7}{110}+\dfrac{7}{132}+\dfrac{7}{156}+...+\dfrac{7}{4830}\)
\(=\dfrac{7}{10\cdot11}+\dfrac{7}{11\cdot12}+\dfrac{7}{12\cdot13}+...+\dfrac{7}{69\cdot70}\)
\(=7\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+...+\dfrac{1}{69}-\dfrac{1}{70}\right)\)
\(=7\left(\dfrac{1}{10}-\dfrac{1}{70}\right)\)
\(=7\cdot\dfrac{3}{35}=\dfrac{3}{5}\)