RÚT GỌN BIỂU THỨC:
17) \(A = \left(\dfrac{\sqrt{x} - 1}{3\sqrt{x} - 1} - \dfrac{1}{3\sqrt{x} + 1} + \dfrac{8\sqrt{x}}{9x - 1}\right) : \left(1 - \dfrac{3\sqrt{x} - 2}{3\sqrt{x} + 1}\right)\)
Xét tích phân I=\(\int\limits^{\dfrac{\pi}{2}}_0\dfrac{sin2x}{\sqrt{1+cosx}}dx\). Nếu đặt t=\(\sqrt{1+cosx}\), khẳng định nào dưới đây là đúng?
A. I= \(\int\limits^1_{\sqrt{2}}\dfrac{4t^3-4t}{t}dt\)
B. I= \(\int\limits^1_{\sqrt{2}}\dfrac{-4t^3+4t}{t}dt\)
C. I= \(4\int\limits^{\sqrt{2}}_1\left(t^2-1\right)dt\)
D. I= \(-4\int\limits^{\sqrt{2}}_1\left(t^2-1\right)dt\)
Tính giới hạn sau:
1) \(\lim\limits_{n\rightarrow\infty}\dfrac{1}{n^3}\left(1+2^2+...+\left(n-1\right)^2\right)\)
2) \(\lim\limits_{n\rightarrow\infty}\dfrac{1}{n}[\left(x+\dfrac{a}{n}\right)+\left(x+\dfrac{2a}{n}\right)+...+\left(x+\dfrac{\left(n-1\right)a}{n}\right)]\)
3) \(\lim\limits_{n\rightarrow\infty}\dfrac{1^3+2^3+...+n^3}{n^4}\)
\(Chox,y>0\)
\(\log_{\sqrt{3}}\left[\dfrac{2x+y}{4x^2+y^2+2xy+2}\right]=2x\left(2x-3\right)+y\left(y-3\right)+2xy\)
Tính \(P_{Max}=\dfrac{6x+2y+1}{2x+y+6}\)
Viết phương trình tiếp tuyến của đồ thị hàm số:
\(y=\dfrac{-x+2}{x+1}\)
a, Tại giao điểm của đồ thị vs trục hoành
b, Tại giao điểm của đồ thị vs trục tung
c, Hệ số góc \(k=-3\)
và X2 + X = 0 trên R?
và X2 + X = 0 trên R?
Tính: (1,5)4 , ( \(\dfrac{-2}{3}\))3 , ( \(\sqrt{3}\))5
Trong không gian Oxyz, cho hai điểm A(1;-2;3) và B(3;4;-1) và đường thẳng delta: \(\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z-3}{2}\) . Gọi (P) là ax +by +cz-13=0 là mặt phẳng chứa delta và cách đều hai điểm A,B . Tổng S = a+b+c bằng
\(\dfrac{\sqrt[2]{9}}{3}\)