\(\left(\dfrac{2024}{2025}\right)^{10-x}=1\)
=>10-x=0
=>x=10-0=10
\(\left(\dfrac{2024}{2025}\right)^{10-x}=1\)
=>10-x=0
=>x=10-0=10
Tìm số dư trong phép chia\(\left(2023^{2024}+2024^{2025}+2025^{2026}\right)^{10}\) chia cho 111
Tìm số dư trong phép chia (2023\(\left(2023^{2024}+2024^{2025}+2025^{2026}\right)^{10}\)chia cho 111
Tìm x,y biết
a,\(\left(2^3\right)^{1^{2005}}\cdot x+2005^0\cdot x=994-15:3+1^{2025}\)
b,\(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)
c,\(2024^{|x-1|+y^2-1}\cdot3^{2024}=9^{1012}\)
tìm x,y biết
a,\(\left(2^3\right)^{1^{2005}}\cdot x+2005^0\cdot x=9915:3+1^{2025}\)
b,\(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)
c,\(2024^{\left|x-1\right|=y^2-1}\cdot3^{2024}=9^{1012}\)
\(\dfrac{x-5}{3}=\dfrac{-12}{5-x}\)
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2023}{2024}\)
cho các số thực x,y,z thỏa mãn \(\left(x-y +z\right)^2\)+\(\sqrt{y^4}\)+\(\left|1-z^3\right|\) \(\le\) 0
Chứng minh rằng \(x^{2023}\)+\(y^{2024}\)+\(z^{2025}\)=0
a,4.|3x-1|=|6x-2|+|-1,5|
b,2024.|2x-1|=2025.|1-2x|-|-2|
c,|2x+1|+|3x-1|=0
so sánh
\(\dfrac{10^{2023}-3}{10^{2024}-3}\)
và
\(\dfrac{10^{2022}+1}{10^{2023}+1}\)
SO SÁNH 45 VỚI S
\(S=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}+...+\frac{1}{\sqrt{2025}-\sqrt{2024}}\)
tìm giá trị lớn nhất của P = \(\dfrac{|x-2022|-|x-2023|+|x-2024|+2022}{|x-2022|+|x-2023|+|x-2024|}\)