`1/(\sqrt100+\sqrt99) + 1/(\sqrt99+\sqrt98)+....+1/(\sqrt2+1)`
`=(\sqrt100-\sqrt99)/(100-99) + (\sqrt99-\sqrt98)/(99-98) + ... + (\sqrt2-1)/(2-1)`
`=\sqrt100 - \sqrt99 + \sqrt99 -\sqrt98 +... + \sqrt2-1`
`=\sqrt100-1`
`=10-1=9`
`1/(\sqrt100+\sqrt99) + 1/(\sqrt99+\sqrt98)+....+1/(\sqrt2+1)`
`=(\sqrt100-\sqrt99)/(100-99) + (\sqrt99-\sqrt98)/(99-98) + ... + (\sqrt2-1)/(2-1)`
`=\sqrt100 - \sqrt99 + \sqrt99 -\sqrt98 +... + \sqrt2-1`
`=\sqrt100-1`
`=10-1=9`
cho B=\(\dfrac{1}{\sqrt{1}+\sqrt{2}}\)+\(\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{98}+\sqrt{99}}+\dfrac{1}{\sqrt{99}+\sqrt{100}}\).số nghiệm của phương trình \(x^3+3Bx^2+27Bx+9B^2=0\) là ?
Cho \(x=\dfrac{\sqrt{2}-\sqrt{1}}{1+\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{2+\sqrt{3}}+\dfrac{\sqrt{4}-\sqrt{3}}{3+4}+...+\dfrac{\sqrt{100}-\sqrt{99}}{99+100}\). Chứng minh \(x< \dfrac{1}{2}\)
Cho x=\(\dfrac{\sqrt{2}-\sqrt{1}}{1+2}+\dfrac{\sqrt{3}-\sqrt{2}}{2+3}+...+\dfrac{\sqrt{100}-\sqrt{99}}{99+100}\)
chung minh x<\(\dfrac{1}{2}\)
\(\dfrac{1}{\sqrt{1}-\sqrt{2}}+\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}+...+\dfrac{1}{\sqrt{99}-\sqrt{100}}\)
\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
Tính:
A=\(\dfrac{1}{1+\sqrt{2}}\)+\(\dfrac{1}{\sqrt{2}+\sqrt{3}}\)+\(\dfrac{1}{\sqrt{3}+\sqrt{4}}\)+.....+\(\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
Giải giúp tui với :)) \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
a)\(\left(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{15}{3-\sqrt{3}}\right)\dfrac{1}{\sqrt{3}+5}\)
b)\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+3}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
\(C=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+....\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
\(C=\dfrac{1\left(1-\sqrt{2}\right)}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}+\dfrac{1\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}+\dfrac{1\left(\sqrt{3}-\sqrt{4}\right)}{\left(\sqrt{3}-\sqrt{4}\right)\left(\sqrt{3}+\sqrt{4}\right)}+........\dfrac{1\left(\sqrt{99}-\sqrt{100}\right)}{\left(\sqrt{99}-\sqrt{100}\right)\left(\sqrt{99}+\sqrt{100}\right)}\)
\(C=\dfrac{1-\sqrt{2}}{1-2}+\dfrac{\sqrt{2}-\sqrt{3}}{2-3}+\dfrac{\sqrt{3}-\sqrt{4}}{3-4}+.....+\dfrac{\sqrt{99}-\sqrt{100}}{99-100}\)
\(C=\dfrac{1-\sqrt{2}}{-1}+\dfrac{\sqrt{2}-\sqrt{3}}{-1}+\dfrac{\sqrt{3}-\sqrt{4}}{-1}+......+\dfrac{\sqrt{99}-\sqrt{100}}{-1}\)
\(C=-\left(1-\sqrt{2}\right)-\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}-\sqrt{4}\right)-......-\left(\sqrt{99}-\sqrt{100}\right)\)
\(C=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{4}-......-\sqrt{99}+\sqrt{100}\)
\(C=-1+\sqrt{100}\)
\(C=10-1=9\)