\(\dfrac{1}{5^{x-1}}+3\cdot5^{2-x}=\dfrac{16}{125}\)
=>\(\dfrac{1}{5^x\cdot\dfrac{1}{5}}+3\cdot\dfrac{25}{5^x}=\dfrac{16}{125}\)
=>\(\dfrac{80}{5^x}=\dfrac{16}{125}\)
=>\(5^x=125\cdot\dfrac{80}{16}=625=5^4\)
=>x=4
`1/(5^(x-1)) + 3 . 5^(2-x) = 16/125`
`=> 1/(5^x . 1/5 ) +3. 25/5^(x) = 16/125`
`=> 80/(5^x) = 16/125`
`=> 5^x = 16/125 . 80`
`=> 5^x =625`
`=> 5^x = 5^4`
`=> x = 4`
Vậy: `x=4`