\(\dfrac{1}{3x-1}-\dfrac{1}{3x+1}+\dfrac{2x-3}{1-9x^2}=\dfrac{1}{3x-1}-\dfrac{1}{3x+1}-\dfrac{3-2x}{\left(3x+1\right)\left(3x-1\right)}=\dfrac{3x+1}{\left(3x+1\right)\left(3x-1\right)}-\dfrac{3x-1}{\left(3x+1\right)\left(3x-1\right)}-\dfrac{3-2x}{\left(3x+1\right)\left(3x-1\right)}=\dfrac{3x+1-3x+1-3+2x}{\left(3x+1\right)\left(3x-1\right)}\)
= \(\dfrac{2x-1}{\left(3x+1\right)\left(3x-1\right)}\)
\(\dfrac{1}{3x-1}-\dfrac{1}{3x+1}+\dfrac{2x-3}{1-9x^2}\left(ĐKXĐ:x\ne\dfrac{1}{3};x\ne-\dfrac{1}{3}\right).\)
\(=\dfrac{1}{3x-1}-\dfrac{1}{3x+1}-\dfrac{2x-3}{\left(3x-1\right)\left(3x+1\right)}.\)
\(=\dfrac{3x+1-3x+1-2x+3}{\left(3x-1\right)\left(3x+1\right)}.\)
\(=\dfrac{-2x+5}{\left(3x-1\right)\left(3x+1\right)}.\)