\(\dfrac{-1}{90}>x-1\\ \Rightarrow-1>90\left(x-1\right)\\ \Rightarrow-1>90x-90\\ \Rightarrow90x-90+1< 0\\ \Rightarrow90x-89< 0\\ \Rightarrow90x< 89\\ \Rightarrow x< \dfrac{89}{90}\)
\(\dfrac{-1}{90}>x-1\\ \Rightarrow-1>90\left(x-1\right)\\ \Rightarrow-1>90x-90\\ \Rightarrow90x-90+1< 0\\ \Rightarrow90x-89< 0\\ \Rightarrow90x< 89\\ \Rightarrow x< \dfrac{89}{90}\)
1.\(x=\dfrac{y}{6}=\dfrac{z}{3}và2x-3y+4z=24\)
2.\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}và5z-3x-4y=50\)
3.\(6x=10y=15zvàx+y-z=90\)
\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{90}}\)
Tìm x,y,z biết:
a. \(x=\dfrac{y}{6}=\dfrac{z}{3}và2x-3x-4z=24\)
\(b.6x=10y=15z\) và \(x+y-z=90\)
\(c.\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}và5z-3x-4y=50\)
\(d.\dfrac{x}{4}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{3}vàx-y+100=z\)
\(\dfrac{1-3-5-7-...-49}{90}\)
Câu 1 The function mm is defined on the real numbers by m(k) = \dfrac{k+2}{k+8}m(k)= k+8 k+2 . What is the value of 10\times m(2)10×m(2)? Answer: Câu 2 The function ff is defined on the real numbers by f(x)= ax-3f(x)=ax−3. What is the value of a if f(3)=9f(3)=9? Answer: Câu 3 The function ff is defined on the real numbers by f(x)= 2x+a-3f(x)=2x+a−3. What is the value of a if f(-5)=11f(−5)=11? Answer: Câu 4 The function ff is defined on the real numbers by f(x) = 2 + x-x^2f(x)=2+x−x 2 . What is the value of f(-3)f(−3)? Answer: Câu 5 Given a real number aa and a function ff is defined on the real numbers by f(x)=-6\times|3x|-4f(x)=−6×∣3x∣−4. Compare: f(a)f(a) f(-a)f(−a) Câu 6 There are ordered pairs (x;y)(x;y) where xx and yy are integers such that \dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8} x 5 + 4 y = 8 1 Câu 7 Given a negative number kk and a function ff is defined on the real numbers by f(x)=\dfrac{6}{13}xf(x)= 13 6 x. Compare: f(k)f(k) f(-k)f(−k) Câu 8 Given a positive number kk and a function ff is defined on the real numbers by f(x)=\dfrac{-3}{4}x+4f(x)= 4 −3 x+4. Compare: f(k)f(k) f(-k)f(−k). Câu 9 A=(1+2+3+\ldots+90) \times(12 \times34-6 \times 68):(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6})=A=(1+2+3+…+90)×(12×34−6×68):( 3 1 + 4 1 + 5 1 + 6 1 )= Câu 10 Given that \dfrac{2x+y+z+t}{x}=\dfrac{x+2y+z+t}{y}=\dfrac{x+y+2z+t}{z}=\dfrac{x+y+z+2t}{t} x 2x+y+z+t = y x+2y+z+t = z x+y+2z+t = t x+y+z+2t . The negative value of \dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z} z+t x+y + t+x y+z + x+y z+t + y+z t+x is
\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\)
\(\dfrac{x+1}{22}=\dfrac{6}{x}\)
\(\dfrac{2x-1}{2}=\dfrac{5}{x}\)
\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\)
\(\dfrac{2x+1}{9}=\dfrac{5}{x+1}\)
Tìm x
MỌI NGƯỜI GIÚP EM VỚI
Bài 1: tìm x
a)\(\left|3x-5\right|=4\)
b)\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
c)\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
Bài 2: Tính
a)\(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{\dfrac{3}{5}-\dfrac{3}{25}-\dfrac{3}{125}-\dfrac{3}{625}}{\dfrac{4}{5}-\dfrac{4}{25}-\dfrac{4}{125}-\dfrac{4}{625}}\)
b)\(\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
c)\(\dfrac{\left(\dfrac{3}{10}-\dfrac{4}{15}-\dfrac{7}{20}\right).\dfrac{5}{19}}{\left(\dfrac{1}{14}+\dfrac{1}{7}-\dfrac{-3}{35}\right).\dfrac{-4}{3}}\)
1.tính \(\dfrac{1}{99.97}-\dfrac{1}{97.95}-\dfrac{1}{95.93}-...-\dfrac{1}{5.3}-\dfrac{1}{3.1}\)
2. tìm x. biết : \(|x+\dfrac{1}{2}|+|x+\dfrac{1}{6}|+|x+\dfrac{1}{12}|+|x+\dfrac{1}{20}|+...+|x+\dfrac{1}{110}|=11x\)
3. tính gtri b thức C= \(2x^5-5y^3+2015\) tại x, y thỏa mãn: \(|x-1|+\left(y+2\right)^{20}=0\)
Tìm x, biết
a)\(\dfrac{1}{2}\)x\(x\)-\(\dfrac{7}{3}\)=\(\dfrac{-5}{6}\)+\(\dfrac{3}{4}\)x\(x\)
b)\(\dfrac{4}{5}\)x\(x\)-\(\dfrac{6}{5}\)=\(\dfrac{1}{2}\)+\(\dfrac{3}{2}\)x\(x\)
c)\(\dfrac{2}{5}\)x(3x\(x\)+\(\dfrac{3}{4}\))=\(1\dfrac{1}{5}\)-\(\dfrac{1}{3}\)x\(x\)
d)2x(3x\(x \)+\(\dfrac{3}{4}\))+\(\dfrac{4}{5}\)=\(\dfrac{1}{2}\)-2x\(x\)