`=1-(1)/(2)+(1)/(2)-(1)/(3)+(1)/(3)-(1)/(4)+...+(1)/(9)-(1)/(10)`
`=1-(1)/(10)=(9)/(10)`
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}=\dfrac{10-1}{10}=\dfrac{9}{10}\)
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+...+\dfrac{1}{9\times10}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\\ =1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-...-\left(\dfrac{1}{9}-\dfrac{1}{9}\right)-\dfrac{1}{10}\\ =1-0-0-...-0-\dfrac{1}{10}\\ =1-\dfrac{1}{10}\\ =\dfrac{9}{10}\)