\(x\) + \(\dfrac{1}{3}\) = \(\dfrac{y}{5}\) và \(x\) + y = 15
\(x\) + y = 15 ⇒ \(x\) = 15 - y Thay vào \(x\) + \(\dfrac{1}{3}\) = \(\dfrac{y}{5}\) ta có:
15 - y + \(\dfrac{1}{3}\) = \(\dfrac{y}{5}\)
\(\dfrac{y}{5}\) + y = 15 + \(\dfrac{1}{3}\)
\(\dfrac{6y}{5}\) = \(\dfrac{46}{3}\)
y = \(\dfrac{46}{3}\) : \(\dfrac{6}{5}\)
y = \(\dfrac{115}{9}\)
thay y = \(\dfrac{115}{9}\) vào \(x\) = 15 - \(\dfrac{115}{9}\) ta có \(x\) = 15 - \(\dfrac{115}{9}\) ⇒ \(x\) = \(\dfrac{20}{9}\)
Vậy (\(x\); y) = (\(\dfrac{20}{9}\); \(\dfrac{115}{9}\))
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
(x + 1)/3 = y/5 = (x + 1 + y)/(3 + 5) = (15 + 1)/8 = 2
*) (x + 1)/3 = 8
x + 1 = 8.3
x + 1 = 24
x = 24 - 1
x = 23
*) y/5 = 8
y = 8.5
y = 40
Vậy x = 23; y = 40