Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bảo Trân

loading... Đề Bài : Phân tích các đa thức sau thành nhân tử. Giúp E Với ạ 🥲

Nguyễn Lê Phước Thịnh
29 tháng 8 2023 lúc 13:01

o: x^4+x^3+x^2-1

=x^3(x+1)+(x-1)(x+1)

=(x+1)(x^3+x-1)

q: \(=\left(x^3-y^3\right)+xy\left(x-y\right)\)

=(x-y)(x^2+xy+y^2)+xy(x-y)

=(x-y)(x^2+2xy+y^2)

=(x-y)(x+y)^2

s: =(2xy)^2-(x^2+y^2-1)^2

=(2xy-x^2-y^2+1)(2xy+x^2+y^2-1)

=[1-(x^2-2xy+y^2]+[(x+y)^2-1]

=(1-x+y)(1+x-y)(x+y-1)(x+y+1)

u: =(x^2-y^2)-4(x+y)

=(x+y)(x-y)-4(x+y)

=(x+y)(x-y-4)

x: =(x^3-y^3)-(3x-3y)

=(x-y)(x^2+xy+y^2)-3(x-y)

=(x-y)(x^2+xy+y^2-3)

z: =3(x-y)+(x^2-2xy+y^2)

=3(x-y)+(x-y)^2

=(x-y)(x-y+3)

HT.Phong (9A5)
29 tháng 8 2023 lúc 13:21

o) \(x^4+x^3+x^2-1\)

\(=\left(x^4+x^3\right)+\left(x^2-1\right)\)

\(=x^3\left(x+1\right)+\left(x+1\right)\left(x-1\right)\)

\(=\left(x+1\right)\left(x^3+x-1\right)\)

q) \(x^3+x^2y-xy^2-y^3\)

\(=\left(x^3+x^2y\right)-\left(xy^2+y^3\right)\)

\(=x^2\left(x+y\right)-y^2\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-y^2\right)\)

\(=\left(x+y\right)^2\left(x-y\right)\)

s) \(4x^2y^2-\left(x^2+y^2-1\right)^2\)

\(=\left(2xy\right)^2-\left(x^2+y^2-1\right)^2\)

\(=\left(2xy-x^2-y^2+1\right)\left(2xy+x^2+y^2-1\right)\)

\(=-\left(x^2-2xy+y^2-1\right)\left(x^2+2xy+y^2-1\right)\)

\(=-\left(x-y-1\right)\left(x-y+1\right)\left(x+y+1\right)\left(x+y-1\right)\)

u) \(x^2-y^2-4x-4y\)

\(=\left(x^2-y^2\right)-\left(4x+4y\right)\)

\(=\left(x+y\right)\left(x-y\right)-4\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-4\right)\)

x) \(x^3-y^3-3x+3y\)

\(=\left(x^3-y^3\right)-\left(3x-3y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2-3\right)\)

z) \(3x-3y+x^2-2xy+y^2\)

\(=\left(3x-3y\right)+\left(x^2-2xy+y^2\right)\)

\(=3\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3+x-y\right)\)


Các câu hỏi tương tự
Nguyễn Trung Kiên
Xem chi tiết
Lan chi
Xem chi tiết
Nguyễn Việt Anh
Xem chi tiết
Trần Nam Khánh
Xem chi tiết
Nguyễn Ngọc Phương An
Xem chi tiết
Thanh Triều Vương Nguyễn
Xem chi tiết
Nguyễn Hà Phương
Xem chi tiết
Nguyễn Lê Hoài  Vi
Xem chi tiết
Kinomoto Kasai
Xem chi tiết