\(A=2^{100}+2^{101}+2^{102}+2^{103}+2^{104}+2^{105}\)
\(=2^{100}.\left(1+2+2^2+2^3+2^4+2^5\right)=2^{100}.63\)
\(=2^{100}.9.7⋮7\)
Vậy \(A=2^{100}+2^{101}+2^{102}+2^{103}+2^{104}+2^{105}⋮7\)
\(A=2^{100}+2^{101}+2^{102}+2^{103}+2^{104}+2^{105}\)
\(=2^{100}.\left(1+2+2^2+2^3+2^4+2^5\right)=2^{100}.63\)
\(=2^{100}.9.7⋮7\)
Vậy \(A=2^{100}+2^{101}+2^{102}+2^{103}+2^{104}+2^{105}⋮7\)
Cho biểu thức A = 1 + 21 + 22 + 23 +...+ 2100 + 2101 .Chứng minh A chia hết cho 7
Bài 3. Cho A = 2 + 23+25+…+ 2101
a) Tổng A có mấy số hạng;
b) Chứng minh rằng 3A + 2 = 2103;
c) Chứng tỏ rằng A chia hết cho 2 và 21.
d*) Tìm chữ số tận cùng của A
Bài 1: Chứng minh rằng tổng sau chia hết cho 7: A= 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^59 + 2^60
Bài 2: a) Cho A= 999993^1999 - 555557^1997. Chứng minh rằng A chia hết cho 5
b) Chứng tỏ rằng: 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
Bài 3: Chứng tỏ rằng: 2x + 3y chia hết cho 17 <=> 9x + 5y chia hết cho 17
Chứng minh tích của 7 STN liên tiếp chia hết cho 2101
chứng tỏ A chia hết cho 6 với:
A=2+22+23+...+2100
Bài 3. Tìm các chữ số sao cho số 7a4b chia hết cho 4 và chia hết cho 7
Bài 2. Tìm số tự nhiên n để 3n +
Bài 4. Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Bài 5. Chứng tỏ rằng tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
chứng tỏ A chia hết cho 6 với A= 2+22+23+24+...+2100
Chứng tỏ A chia hết cho 6 với A = 2 + 22 + 23 + 24 + … + 2100
Chứng tỏ A chia hết cho 10 với A = 2+22+23+...+2100 ❤