Cho hai đường thẳng d và d’ song song với nhau. Trên d lấy 5 điểm phân biệt, trên d’ lấy 7 điểm phân biệt. Hỏi có bao nhiêu tam giác mà các đỉnh của nó được lấy từ các điểm trên hai đường thẳng d và d’.
A. 175
B. 220
C. 1320
D. 105
Cho tỉ số bằng nhau
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\) và \(a+b+c+d\ne0\) thì giá trị biểu thức
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=...\)
Cho 2 phân số a/b và c/d ; d>0 .C/m:a/b <c/d nếu axd<bxc
a/b>c/d nếu a x d>c x b
Cho hai đường thẳng d : x - 1 2 = y + 1 3 = z - 5 1 , d ' : x - 1 3 = y + 2 2 = z + 1 2 . Vị trí tương đối của d và d’ là
A. Chéo nhau
B. Song song
C. Cắt nhau
D. Trùng nhau
Cho a, b , c, d thuộc Z . CMR
( a - b ) . ( a - c ) . ( a - d ) .( b - c ) . ( b - d ) . ( c - d ) chia hết cho 12
Cho a, b , c, d thuộc Z . CMR
( a - b ) . ( a - c ) . ( a - d ) .( b - c ) . ( b - d ) . ( c - d ) chia hết cho 12
cho phân số a/b (b khác 0 ) . tìm phân số c/d ( c,d khác 0 ) sao cho : a/b :c/d = a/b . c/d
Trong không gian Oxyz, cho 2 đường thẳng chéo nhau d: d : x - 3 - 4 = y + 2 1 = z + 1 1 và d ' : x - 6 = y - 1 1 = z - 2 2 . Phương trình nào dưới đây là phương trình đường thẳng vuông góc chung của d và d’
A. x + 1 1 = y + 1 2 = z 2
B. x - 1 1 = y - 1 2 = z 2
C. x + 1 1 = y - 1 2 = z 2
D. x - 1 1 = y - 1 2 = z + 1 2
Trong mặt phẳng Oxy, cho đường thẳng d: x-2y+2=0; d': x-2y-8=0. Phép đối xứng tâm biến d thành d' và biến trục Ox thành chính nó có tâm I là
A. I(0;-3)
B. I(0;3)
C. I(-3;0)
D. I(3;0)
Cho hàm số f ( x ) = a x 3 + b x 2 + c x + d với a , b , c , d ∈ ℝ , a > 0 và d > 2018 a + b + c + d - 2018 < 0 . Số cực trị của hàm số y = f ( x ) - 2018 bằng
A. 3
B. 2
C. 1
D. 5