\(1,\\ a,=3\sqrt{2}-12\sqrt{2}+8\sqrt{2}-5\sqrt{2}=-6\sqrt{2}\\ b,=\sqrt{5}-2+\sqrt{\left(3-\sqrt{5}\right)^2}=\sqrt{5}-2+3-\sqrt{5}=1\\ c,=\dfrac{4\left(\sqrt{3}-1\right)}{2}-\dfrac{5\left(\sqrt{3}-2\right)}{-1}+\dfrac{6\left(\sqrt{3}-3\right)}{-6}\\ =2\sqrt{3}-2+5\sqrt{3}-10-6\sqrt{3}+18=\sqrt{3}+6\\ d,=4\sqrt{3}-2\sqrt{3}+1-\sqrt{3}=\sqrt{3}+1\)
\(3,\\ a,PT\Leftrightarrow\left|6x-5\right|=4\Leftrightarrow\left[{}\begin{matrix}6x-5=4\\5-6x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{6}\end{matrix}\right.\\ b,PT\Leftrightarrow2\sqrt{x-5}+3\cdot\dfrac{1}{3}\sqrt{x-5}-\dfrac{1}{4}\cdot4\sqrt{x-5}=6\\ \Leftrightarrow\sqrt{x-5}=6\Leftrightarrow x-5=36\Leftrightarrow x=41\\ c,ĐK:x\le\dfrac{5}{2}\\ PT\Leftrightarrow5-2x=x^2-6x+9\\ \Leftrightarrow x^2-4x+4=0\\ \Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\left(tm\right)\)
\(2,\\ a,\dfrac{1}{3}\sqrt{153}=\dfrac{1}{3}\cdot3\sqrt{17}=\sqrt{17}< \sqrt{18}=3\sqrt{2}\\ b,ĐK:5-2x\ge0\Leftrightarrow-2x\ge-5\Leftrightarrow x\le\dfrac{5}{2}\\ c,ĐK:x\ge2\sqrt{2}\\ PT\Leftrightarrow x-2\sqrt{2}=3-2\sqrt{2}\\ \Leftrightarrow x-3=0\Leftrightarrow x=3\left(tm\right)\)