10: \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)
\(=\left(\sqrt{3-\sqrt{5}}\right)^2+\left(\sqrt{3+\sqrt{5}}\right)^2+2\cdot\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)
\(=3-\sqrt{5}+3+\sqrt{5}+2\cdot\sqrt{9-5}\)
\(=6+2\cdot2=10\)
11: \(\left(\sqrt{\sqrt{7}+\sqrt{3}}+\sqrt{\sqrt{7}-\sqrt{3}}\right)^2\)
\(=\left(\sqrt{\sqrt{7}+\sqrt{3}}\right)^2+\left(\sqrt{\sqrt{7}-\sqrt{3}}\right)^2+2\cdot\sqrt{\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}\)
\(=\sqrt{7}+\sqrt{3}+\sqrt{7}-\sqrt{3}+2\cdot\sqrt{7-3}\)
\(=2\sqrt{7}+2\cdot2=2\sqrt{7}+4\)
12: \(\left(\sqrt{\sqrt{11}+\sqrt{7}}-\sqrt{\sqrt{11}-\sqrt{7}}\right)^2\)
\(=\left(\sqrt{\sqrt{11}+\sqrt{7}}\right)^2+\left(\sqrt{\sqrt{11}-\sqrt{7}}\right)^2-2\cdot\sqrt{\left(\sqrt{11}-\sqrt{7}\right)\left(\sqrt{11}+\sqrt{7}\right)}\)
\(=\sqrt{11}+\sqrt{7}+\sqrt{11}-\sqrt{7}-2\cdot\sqrt{11-7}\)
\(=2\sqrt{11}-4\)
13:
\(\sqrt{\sqrt{2}-1}\cdot\sqrt{2-\sqrt{3-\sqrt{2}}}\cdot\sqrt{2+\sqrt{3-\sqrt{2}}}\)
\(=\sqrt{\sqrt{2}-1}\cdot\sqrt{4-\left(3-\sqrt{2}\right)}\)
\(=\sqrt{\sqrt{2}-1}\cdot\sqrt{\sqrt{2}+1}\)
\(=\sqrt{2-1}=1\)
14:
\(\sqrt{4+\sqrt{8}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{\left(2+\sqrt{2+\sqrt{2}}\right)\left(2-\sqrt{2+\sqrt{2}}\right)}\)
\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2-\sqrt{2}}\)
\(=\sqrt{\left(4+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}\)
\(=\sqrt{8-4\sqrt{2}+4\sqrt{2}-4}=\sqrt{4}=2\)