Đk: `a >=0`.
`(-sqrt a)^2 = 4`
`(-sqrt a)(-sqrt a) =4`
`(sqrt a)^2 = 4`
`-> a = 4`.
Vậy có `1` giá trị
Đk: `a >=0`.
`(-sqrt a)^2 = 4`
`(-sqrt a)(-sqrt a) =4`
`(sqrt a)^2 = 4`
`-> a = 4`.
Vậy có `1` giá trị
Có bao nhiêu giá trị của x thỏa mãn \(\left(\sqrt{x}-4\right)\left(x^2-4\right)=0\)
A. 2 B. 4 C. 3 D. 1
đáp án+giải thích
Cần gấp !!!
Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất.
Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)
Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)
Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)
Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)
Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y
Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...
Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...
Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn
số các giá trị của x thỏa mãn :
\(\frac{\left|x-7\right|}{\left|x-4\right|}=\frac{\left|x-1\right|}{\left|x-4\right|}\)là bao nhiêu?
1) Rút gọn biểu thức theo là cách hợp lý:
A = \(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)
2) Tính hợp lý:
M = \(1-\frac{5}{\sqrt{196}}-\frac{5}{\left(2\sqrt{21}\right)^2}-\frac{\sqrt{25}}{204}-\frac{\left(\sqrt{5}\right)^2}{374}\)
3) Có hay không giá trị của x thỏa mãn điều kiện sau:
\(2002.\sqrt{\left(1+x\right)^2}+2003.\sqrt{\left(1-x\right)^2}=0\)
4) Tìm các số x, y, z thỏa mãn đẳng thức:
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
Cho 2 số a,b thỏa mãn\(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\) Tính giá trị của biểu thức M=\(2018\left(a+b\right)^2\)
Cho : \(M=3x+\frac{x^2-y^2}{x^2+1}\)
\(N=\left(x+1\right)^2+\left(y-\sqrt{2}\right)^2+2008\)
Tính giá trị của M tại x,y thỏa mãn N đạt giá trị nhỏ nhất
Cho M=\(3x+\frac{x^2-y^2}{x^2+1}\)
\(N=\left(x+1\right)^2+\left(y-\sqrt{2}\right)^2+2008\)
Tính giá trị của M tại x, y thỏa mãn N đạt giá trị nhỏ nhất
cho các số x, y thỏa mãn\(\left(x+20\right)^4\)+\(\left(2y-1\right)^{2024}\)\(\le\)0
Tính giá trị biểu thức M=\(5x^2\)y-\(4xy^2\)
Cho x, y thỏa mãn: \(\left|x-2\right|+\sqrt{\left(y+1\right)^{2015}}=0\)
Tính giá trị của biểu thức: \(P=2x^3+15y^3+2016\)
\(\left(\frac{x}{2}\right)^2+\left(\frac{x}{3}\right)^2+\left(\frac{x}{4}\right)^2+\left(\frac{x}{5}\right)^2+\left(\frac{x}{6}\right)^2+\left(\frac{x}{7}\right)^2\) . Tìm giá trị thỏa mãn của x