Ta có
9 . 3 2 x - m ( 4 x 2 + 2 x + 1 4 + 3 m + 3 ) . 3 x + 1 = 0 ⇔ 3 x + 1 + 1 3 x + 1 - m 3 4 x + 1 + 3 m + 3 = 0 1
Đặt t=x+1, phương trình (1) thành
3 t + 1 3 t - m 3 4 x + 1 + 3 m + 3 = 0 2
Bài toán trở thành tìm số giá trị nguyên của m để phương trình (2) có đúng 3 nghiệm thực phân biệt.
Nhận xét: Nếu t 0 là một nghiệm của phương trình (2) thì - t 0 cũng là một nghiệm của phương trình (2). Do đó điều kiện cần để phương trình (2) có đúng 3 nghiệm thực phân biệt là phương trình (2) có nghiệm t=0.
Với t=0 thay vào phương trình (2) ta có
- m 2 - m + 2 = 0 ⇔ [ m = 1 m = - 2
Thử lại:
+) Với m=-2 phương trình (2) thành 3 t + 1 3 t + 2 3 4 t - 3 = 0
Ta có 3 t + 1 3 t ≥ 2 , ∀ t ∈ ℝ và 2 3 4 t - 3 = 0 , ∀ t ∈ ℝ suy ra 3 t + 1 3 t + 2 3 4 t - 3 = 0 ≥ 0 , ∀ t ∈ ℝ
Dấu bằng xảy ra khi t=0, hay phương trình (2) có nghiệm duy nhất t=0 nên loại m=-2
+) Với m=1 phương trình (2) thành 3 t + 1 3 t + 1 3 4 t + 6 = 0 ( 3 )
Dễ thấy phương trình (3) có 3 nghiệm t=-1,t=0,t=1
Ta chứng minh phương trình (3) chỉ có 3 nghiệm t=-1,t=0,t=1.Vì t là nghiệm thì -t cũng là nghiệm phương trình (3) nên ta chỉ xét phương trình (3) trên [ 0 ; + ∞ )
Trên tập [ 0 ; + ∞ ) ,(3) ⇔ 3 t + 1 3 t + 1 3 4 t + 6 = 0
Xét hàm f ' ( x ) = 3 t + 1 3 t + 1 3 4 t + 6 trên [ 0 ; + ∞ )
Ta có
f ' ( t ) = 3 t ln 3 - 3 - t . ln 3 - 2 3 t , f ' ' ( t ) = 3 t ln 2 3 + 3 - t . ln 2 3 + 1 3 . t 3 > 0 , ∀ t > 0
Suy ra f '(t) đồng biến trên ( 0 ; + ∞ ) ⇒ f ' ( t ) = 0 có tối đa 1 nghiệm t > 0 ⇒ f ( t ) = 0 có tối đa 2 nghiệm t ∈ [ 0 ; + ∞ ) . Suy ra trên [ 0 ; + ∞ ) , phương trình (3) có 2 nghiệm t=0, t=1
Do đó trên tập ℝ , phương trình (3) có đúng 3 nghiệm t=-1,t=0,t=1. Vậy chọn m=1
Chú ý: Đối với bài toán trắc nghiệm này, sau khi loại được m=-2 ta có thể kết luận đáp án C do đề không có phương án nào là không tồn tại m.
Chọn đáp án C.