Cho hàm số y = f ( x ) liên tục trên ℝ và có đồ thị như hình vẽ bên. Xét 4 mệnh đề sau
(1) Hàm số y = f ( x ) đạt cực đại tại x 0 = 0
(2) Hàm số y = f ( x ) có ba cực trị.
(3) Phương trình y = f ( x ) có đúng ba nghiệm phân biệt
(4) Hàm số đạt giá trị nhỏ nhất là -2 trên đoạn [-2;2]
Hỏi trong 4 mệnh đề trên, có bao nhiêu mệnh đề đúng?
A. 1
B. 3
C. 4
D. 2
Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d có đồ thị hàm số như hình bên dưới đây:
Có bao nhiêu giá trị nguyên của tham số m để phương trình f 2 ( x ) - ( m + 5 ) f ( x ) + 4 m + 4 = 0 có 7 nghiệm phân biệt?
A. 1
B. 2
C. 3
D. 4
Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d ( a , b , c , d ∈ ℝ ) có bảng biến thiên như hình sau:
Tìm tất cả giá trị thực của tham số m để phương trình m = f ( x ) có 4 nghiệm phân biệt trong đó có đúng một nghiệm dương.
A.m > 2
B.0 < m < 4
C.m > 0
D.2 < m < 4
Cho hàm số y = f(x) liên tục trên đoạn [-3;10], biết f − 3 = f 3 = f 8 và có bảng biến thiên như hình sau
Có bao nhiêu giá trị nguyên của m để phương trình f(x)=f(m) có ba nghiệm thực phân biệt thuộc đoạn [-3;10]?
A. 1.
B. 2.
C. 8.
D. 9.
Cho hàm số f ( x ) = ln x + x 2 + 1 Với mỗi số nguyên dương m đặt S m = f ( - m ) + f ( - m + 1 ) + . . + ( 0 ) + . . + f ( m - 1 ) Có bao nhiêu giá trị của m để phương trình 8 x - 3 . 4 x - S m = 0 có hai nghiệm thực phân biệt
A. 27
B. 2
C. 28
D. 1
Cho hai hàm đa thức y = f(x), y = g(x) có đồ thị là hai đường cong ở hình vẽ. Biết rằng đồ thị hàm số y = f(x) có đúng một điểm cực trị là A, đồ thị hàm số y = g(x) có đúng một điểm cực trị là B và A B = 7 4 . Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (-5;5) để hàm số y = f ( x ) - g ( x ) + m có đúng 5 điểm cực trị?
A. 1
B. 3
C. 4
D. 6
Cho hàm số f(x) có đạo hàm liên tục trên và thỏa mãn f ( x ) > 0 , ∀ ∈ ℝ . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm thực phân biệt.
A. m > e
B. 0 < m ≤ 1
C. 0 < m < e
D. 1 < m < e
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f(x)>0,∀x∈R. Biết f(0)=1 và (2-x)f(x)-f' (x)=0. Tìm tất cả các giá trị thực của tham số m để phương trình f(x)=m có hai nghiệm phân biệt.
A. m< e 2 .
B. 0<m< e 2 .
C. 0<m≤ e 2 .
D. m > e 2
Cho hàm số f ( x ) = 1 3 x 3 - x 2 + x + 3 - log 3 m Có bao nhiêu số nguyên m để phương trình f ( f ( f ( f ( x ) ) ) ) = x có 3 nghiệm thực phân biệt
A. 20
B. 18
C. 19
D. 17