Gọi số người của tổ 1, tổ 2, tổ 3 lần lượt là \(x;y;z\left(x;y;z\in N\cdot\right)\)
Ta có: \(x+y+z=37\)
Vì năng suất lao động của mỗi người là như nhau nên số công nhân và thời gian làm sản phẩm là hai đại lượng tỉ lệ nghịch
\(\Rightarrow12x=10y=8z\\ \Leftrightarrow\dfrac{12x}{120}=\dfrac{10y}{120}=\dfrac{8z}{120}\\ \Leftrightarrow\dfrac{x}{10}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{10}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y+z}{10+12+15}=\dfrac{37}{37}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.1=10\\y=12.1=12\\z=15.1=15\end{matrix}\right.\)
Vậy số người mỗi tổ có lần lượt là 10 người; 12 người và 15 người.