Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn An

có ai làm được hai câu này thì giúp em với ạundefined

Nguyễn Việt Lâm
7 tháng 8 2021 lúc 23:12

a.

ĐKXĐ: \(\left[{}\begin{matrix}x\ge-1+\sqrt{2}\\x\le-1-\sqrt{2}\end{matrix}\right.\)

\(x^2-2x-1+2\left(x-1\right)\sqrt{x^2+2x-1}=0\)

\(\Leftrightarrow\left(x^2+2x-1\right)+2\left(x-1\right)\sqrt{x^2+2x-1}-4x=0\)

\(\Delta'=\left(x-1\right)^2+4x=\left(x+1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=1-x+x+1\\\sqrt{x^2+2x-1}=1-x-x-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=2\\\sqrt{x^2+2x-1}=-2x\left(x\le0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+2x-1=4\\x^2+2x-1=4x^2\left(vô-nghiệm\right)\end{matrix}\right.\)

\(\Rightarrow x\)

Nguyễn Việt Lâm
7 tháng 8 2021 lúc 23:17

b.

ĐKXĐ: \(x\ge-\sqrt[3]{3}\)

\(x^3+3-\left(5x-1\right)\sqrt{x^3+3}+6x^2-2x=0\)

Đặt \(\sqrt{x^3+3}=t\ge0\)

\(\Rightarrow t^2-\left(5x-1\right)t+6x^2-2x=0\)

\(\Delta=\left(5x-1\right)^2-4\left(6x^2-2x\right)=\left(x-1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{5x-1-x+1}{2}=2x\\t=\dfrac{5x-1+x-1}{2}=3x-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^3+3}=2x\left(x\ge0\right)\\\sqrt{x^3+3}=3x-1\left(x\ge\dfrac{1}{3}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^3+2=4x^2\left(x\ge0\right)\\x^3+3=9x^2-6x+1\left(x\ge\dfrac{1}{3}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x^2-3x-3\right)=0\left(x\ge0\right)\\\left(x-1\right)\left(x^2-8x-2\right)=0\left(x\ge\dfrac{1}{3}\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)


Các câu hỏi tương tự
ArcherJumble
Xem chi tiết
ArcherJumble
Xem chi tiết
ArcherJumble
Xem chi tiết
ArcherJumble
Xem chi tiết
ArcherJumble
Xem chi tiết
ArcherJumble
Xem chi tiết
ArcherJumble
Xem chi tiết
ArcherJumble
Xem chi tiết
ArcherJumble
Xem chi tiết