Đáp án B
Có n ( Ω ) = C 12 3
Giả sử chọn 3 người có số thứ tự trong hàng lần lượt là a, b, c
Theo giả thiết ta có: a < b < c, b – a > 1, c – b > 1, a , b , c ∈ { 1 , 2 , . . . , 12 } .
Đáp án B
Có n ( Ω ) = C 12 3
Giả sử chọn 3 người có số thứ tự trong hàng lần lượt là a, b, c
Theo giả thiết ta có: a < b < c, b – a > 1, c – b > 1, a , b , c ∈ { 1 , 2 , . . . , 12 } .
Một tiểu đội có 10 người được xếp ngẫu nhiên thành hàng dọc, trong đó có anh A và anh B. Tính xác xuất sao cho:
a) A và B đứng liền nhau;
b) Trong hai người đó có một người đứng ở vị trí số 1 và một người kia đứng ở vị trí cuối cùng.
Trong chương trình giao lưu gồm có 15 người ngồi vào 15 ghế theo một hàng ngang. Giả sử người dẫn chương trình chọn ngẫu nhiên 3 người trong 15 người để giao lưu với khán giả. Xác suất để trong 3 người được chọn đó không có 2 người ngồi kề nhau là
A . 2 5
B . 13 35
C . 22 35
D . 3 5
Trong chương trình giao lưu gồm có 15 người ngồi vào 15 ghế theo một hàng ngang. Giả sử người dẫn chương trình chọn ngẫu nhiên 3 người trong 15 người để giao lưu với khán giả. Xác suất để trong 3 người được chọn đó không có 2 người ngồi kề nhau
A. 2 5
B. 13 35
C. 22 35
D. 3 5
Có 3 quyển sách toán, 4 quyển sách lý và 5 quyển sách hóa khác nhau được sắp xếp ngẫu nhiên lên một giá sách có 3 ngăn, các quyển sách được sắp dựng đứng thành một hàng dọc vào một trong 3 ngăn ( mỗi ngăn đủ rộng để chứa tất cả các quyển sách). Tính xác suất để không có bất kỳ hai quyển sách toán nào đứng cạnh nhau.
A . 36 91
B . 37 91
C . 54 91
D . 55 91
Một công ty cần tuyển 3 nhân viên. Có 10 người nộp đơn trong đó có một người tên là Hoa. Khả năng được tuyển của mỗi người là như nhau. Chọn ngẫu nhiên 3 người. Tính xác suất để Hoa được chọn
Có 3 quyển sách toán, 4 quyển sách lí và 5 quyển sách hóa khác nhau được sắp xếp ngẫu nhiên lên một giá sách gồm có 3 ngăn, các quyển sách được sắp dựng đứng thành một hàng dọc vào một trong ba ngăn (mỗi ngăn đủ rộng để chứa tất cả quyển sách). Tính xác suất để không có bất kì hai quyển sách toán nào đứng cạnh nhau.
A . 36 91
B . 37 91
C . 54 91
D . 55 91
Trong một buổi liên hoan có 6 cặp nam nữ, trong đó có 3 cặp là vợ chồng. Chọn ngẫu nhiên 3 người trong số đó tham gia trò chơi
b) Tính xác suất để trong 3 người dược chọn không có cặp vợ chồng nào
A. 1/4
B. 9/22
C. 1/11
D. 19/22
Một người chọn ngẫu nhiên 4 chiếc giày từ 5 đôi giày cỡ khác nhau. Tính xác suất để trong bốn chiếc được chọn không có 2 chiếc nào tạo thành một đôi
Một nhóm học sinh gồm bốn bạn nam trong đó có bạn Quân và bốn bạn nữ trong đó có bạn Lan. Xếp ngẫu nhiên bốn bạn trên thành một hàng dọc. Xác suất để xếp được hàng dọc thỏa mãn các điều kiện: đầu hàng và cuối hàng đều là nam và giữa hai bạn nam gần nhau có ít nhất một bạn nữ, đồng thời bạn Quân và bạn Lan không đứng cạnh nhau bằng
A . 3 112
B . 3 80
C . 9 280
D . 39 1120