\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2\)
\(\le\left(1+1\right)\left(n+a+n-a\right)\)
\(=2\cdot2n=4n\)
\(\Rightarrow\sqrt{n+a}+\sqrt{n-a}>\sqrt{4n}=2\sqrt{n}\)
\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2\)
\(\le\left(1+1\right)\left(n+a+n-a\right)\)
\(=2\cdot2n=4n\)
\(\Rightarrow\sqrt{n+a}+\sqrt{n-a}>\sqrt{4n}=2\sqrt{n}\)
Cho \(M_1=\left(\sqrt{a}+\sqrt{b}-\sqrt{c}\right)^2\left(\sqrt{b}+\sqrt{c}-\sqrt{a}\right)^2\left(\sqrt{c}+\sqrt{a}-\sqrt{b}\right)^2\)
\(M_2=\left(\sqrt[4]{a}+\sqrt[4]{b}-\sqrt[4]{c}\right)^4\left(\sqrt[4]{b}+\sqrt[4]{c}-\sqrt[4]{a}\right)^4\left(\sqrt[4]{c}+\sqrt[4]{a}-\sqrt[4]{b}\right)^4\)
\(...\)
\(M_n=\left(\sqrt[2^n]{a}+\sqrt[2^n]{b}-\sqrt[2^n]{c}\right)^{2^n}\left(\sqrt[2^n]{b}+\sqrt[2^n]{c}-\sqrt[2^n]{a}\right)^{2^n}\left(\sqrt[2^n]{c}+\sqrt[2^n]{a}-\sqrt[2^n]{b}\right)^{2^n}\)
Với \(n\inℕ^∗\). CMR: \(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le M_1\le M_2\le...\le M_n\le abc\)
a) cho a,b,c thỏa mãn a > c và b > c > 0. tìm số n nhỏ nhất để có bất đẳng thức sau :
\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le n\sqrt{ab}\)
b) CMR với mọi số nguyên dương n
\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}\le n\sqrt{\frac{n+1}{2}}\)
vs x thuộc N, cmr
\(\left(\sqrt{n+1}-\sqrt{n}\right)^2=\sqrt{\left(2n+1\right)^2}-\sqrt{\left(2n+1\right)^2-1}\)
Chứng minh rằng :
\(a,\sqrt{10}-\sqrt{2}=2.\sqrt{3-\sqrt{5}}\)b
\(b,\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)\) là một số tự nhiên
c CMR với n thuộc N thì \(\left(\sqrt{n+1}-\sqrt{n}\right)^2=\sqrt{\left(2n+1\right)^2-1}\)
Cho a>b>c>0 CMR
\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{a}b\)
1/CMR: \(\forall n\)lẻ thì \(\left(\left(\frac{1+\sqrt{5}}{2}\right)^n+\left(\frac{1-\sqrt{5}}{2}\right)^n\right)^2\) là số chính phương
2/Cho a,b,c>0 và \(a^2+b^2+c^2\le3.CMR:\)
\(\frac{a}{a^2+2b+1}+\frac{b}{b^2+2c+1}+\frac{c}{c^2+2a+1}\le\frac{1}{2}\)
Bài 1: CMR
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+........+\frac{1}{\left(n+1\right)\sqrt{n}}>2,n\varepsilonℕ^∗\)
Bài 2: Cho S= \(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{3\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)
CMR S<\(\frac{1}{2}\)
CMR:
M=\(\frac{1}{3.\left(\sqrt{1}+\sqrt{2}\right)}\)+\(\frac{1}{5.\left(\sqrt{2}+\sqrt{3}\right)}\) +...+\(\frac{1}{\left(2n+1\right).\left(\sqrt{n}+\sqrt{n+1}\right)}< \frac{1}{2}\)
ten ten ten
1. Cho a,b,c>0 và a+b+c=1 CMR sigma\(\frac{a-bc}{a+bc}\le\frac{3}{2}\)
2. cho a,b,c>0 va abc=1 CMR sigma\(\frac{1}{a\left(b+1\right)}\ge\frac{3}{2}\)
3.(i think it is difficult for you)
ch a,b,c>0 CMR sigma\(\frac{b^2c^3}{a^2+\left(b+c\right)^3}\ge\frac{9abc}{4\left(3abc+ab^2+bc^2+ca^2\right)}\)
4. CMR với mọi n là số tự nhiên lớn hơn 1 thì \(\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+...+\frac{1}{\sqrt{n^2+n}}< 1\)