\(bdt\Leftrightarrow\left(\frac{a^3+b^3}{2}\right)^2\ge\left(\frac{a^2+b^2}{2}\right)^3\Leftrightarrow\frac{a^6+b^6+2a^3b^3}{4}\ge\frac{a^6+b^6+3a^4b^2+3a^2b^4}{8}\)
\(\Leftrightarrow a^6+b^6+4a^3b^3\ge3a^4b^2+3a^2b^4\)
Áp dụng bất đẳng thức trung bình cộng - trung bình nhân:
\(a^6+a^3b^3+a^3b^3\ge3\sqrt[3]{a^6.\left(a^3b^3\right)^2}=3a^4b^2\)
\(b^6+a^3b^3+a^3b^3\ge3\sqrt[3]{b^6.\left(a^3b^3\right)^2}=3a^2b^4\)
Cộng 2 bất đẳng thức trên theo vế ta có đpcm.