\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)
\(\Leftrightarrow\sqrt{2.\left[1+2+3+...+\left(n-1\right)+n\right]-n}\)
\(\Leftrightarrow\sqrt{2.\frac{\left(n+1\right)n}{2}-n}\)
\(\Leftrightarrow\sqrt{\left(n+1\right)n-n}\)
\(\Leftrightarrow\sqrt{n^2+n-n}\)
\(\Leftrightarrow\sqrt{n^2}=n\)
Vậy \(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\)