\(\sqrt{1+2+3+...+n-1+n-1+...+3+2+1}\)
\(=\sqrt{2\left[1+2+3+...+n-1\right]+n}\)
\(=\sqrt{\frac{2\left[n-1\right]n}{2}}+n=\sqrt{n^2}=n\)=> ĐPCM
\(\sqrt{1+2+3+...+n-1+n-1+...+3+2+1}\)
\(=\sqrt{2\left[1+2+3+...+n-1\right]+n}\)
\(=\sqrt{\frac{2\left[n-1\right]n}{2}}+n=\sqrt{n^2}=n\)=> ĐPCM
CMR:
\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\)
10. CMR:
\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\) = n
giúp mình với
mình thank you các bạn rất nhiều!
Chứng minh:
\(\sqrt{1^3+2^3+3^3+...+\left(n-2\right)^3+\left(n-1\right)^3+n^3}=1+2+3+...+\left(n-2\right)+\left(n-1\right)+n\)
tính A = \(\left[\sqrt{2}\right]+\left[\sqrt[3]{\frac{3}{2}}\right]+\left[\sqrt[4]{\frac{4}{3}}\right]+...+\left[\sqrt[n+1]{\frac{n+1}{n}}\right]\)
cmr
B=\(\left(1-\frac{3}{2.4}\right)\left(1-\frac{3}{3.5}\right)\left(1-\frac{3}{4.6}\right)...\left(1-\frac{3}{n\left(n+2\right)}\right)< 2 \)Voi moi so nguyen duong n
Bài 1: CMR
a) A = \(\frac{\left(n+1\right).\left(n+2\right)....\left(2n-1\right).\left(2n\right)}{2^n}\) là số nguyên.
b) B = \(\frac{3.\left(n+1\right).\left(n +2\right)...\left(3n-1\right).3n}{3^n}\)là số nguyên.
giúp mik với ạ.
chứng minh rằng: \(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n+1\right)+}...+3+2+1=n\) với n∈N
Chứng minh \(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\)
9) Tìm n, biết :
\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n+1\right)+...+3+2+1}\)