Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó : \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\left(1\right)\)
\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2.k^2-b^2}{d^2.k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2.\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2+d^2}\left(\text{đpcm}\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có
\(VT=\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2\cdot k^2+b^2}{d^2\cdot k^2+d^2}=\frac{b^2\cdot\left(k^2+1\right)}{d^2\cdot\left(k^2+1\right)}=\frac{b^2}{d^2}\)
\(VT=\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2\cdot k^2-b^2}{d^2\cdot k^2-d^2}=\frac{b^2\cdot\left(k^2-1\right)}{d^2\cdot\left(k^2-1\right)}=\frac{b^2}{d^2}\)
\(\Rightarrow VT=VP\)
\(\Leftrightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)
cậu ưi những người là fan lai ko sao cả ARMY LAI BLINK ko sao nhưng ARMY BLINK chúng mk ko ship BANGPINK nhák