Cho x, y>0. CMR: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
CMR: Nếu:
a) \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)\(\forall x,y\ne0\) thì \(\frac{a}{x}=\frac{b}{y}\)
b) \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\forall x,y,z\ne0\) thì\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
c)\(\left(a+b\right)^2=2\left(a^2+b^2\right)\) thì \(a=b\)
CMR: Nếu:
a) \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)\(\forall x,y\ne0\) thì \(\frac{a}{x}=\frac{b}{y}\)
b) \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\forall x,y,z\ne0\) thì\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
c)\(\left(a+b\right)^2=2\left(a^2+b^2\right)\) thì \(a=b\)
CMR bất đẳng thức sau đúng với mọi x;y là các số thực bất kì khác 0 :
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
1, Cho x,y>0.Cmr :\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
2, Tìm giá trị nhỏ nhất của biểu thức :B=\(xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+2045\)
Rút gọn phân thức P=\(\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right).\frac{x+y}{x^2+xy+y^2}\) với \(x\ne0,y\ne0,x\ne-y\)
Cho x,y > 0. Chứng minh rằng: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
Với \(x\ne0\)và \(y\ne0\)Chứng minh rằng
\(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(xy+\frac{1}{xy}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(xy+\frac{1}{xy}\right)\)không phụ thuộc vào giá trị của x và y
Chứng minh bất đẳng thức: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)