Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Khánh Ly

CMR : với mọi bộ số dương a,b,c TMĐK abc=1 , ta đều có :

\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)\(\ge\frac{1}{2}\left(ab+bc+ca\right)\)

alibaba nguyễn
17 tháng 4 2019 lúc 9:06

\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)

\(=\frac{b^2c^2}{ab+ca}+\frac{c^2a^2}{bc+ab}+\frac{a^2b^2}{ca+bc}\)

\(\ge\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{1}{2}\left(ab+bc+ca\right)\)

tth_new
23 tháng 4 2019 lúc 8:52

Áp dụng BĐT Cauchy-Schwarz dạng Engel(hoặc áp dụng BĐT quen thuộc: \(\frac{p^2}{m}+\frac{q^2}{n}\ge\frac{\left(p+q\right)^2}{m+n}\) 2 lần),ta có:

\(VT=\frac{\left(\frac{1}{a^2}\right)}{a\left(b+c\right)}+\frac{\left(\frac{1}{b^2}\right)}{b\left(c+a\right)}+\frac{\left(\frac{1}{c^2}\right)}{c\left(a+b\right)}\)

\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}\) (thay abc = 1 vào)

\(=\frac{ab+bc+ca}{2}=\frac{1}{2}\left(ab+bc+ca\right)^{\left(đpcm\right)}\)


Các câu hỏi tương tự
Bùi Hữu Vinh
Xem chi tiết
Phạm Bá Tâm
Xem chi tiết
Trung Nguyen
Xem chi tiết
asdqwe123
Xem chi tiết
ĐXT Pokiwar Channel
Xem chi tiết
Phương Tuyết
Xem chi tiết
Nguyễn Tuấn Hào
Xem chi tiết
Trần Nguyễn Ngọc Hưng
Xem chi tiết
iseethatimicy
Xem chi tiết