Giải giúp mình:
P(x) là một đa thức hệ số nguyên có nghiệm là 2+\(\sqrt{3}\)
cmr: P( 2-\(\sqrt{3}\)) =0 hay 2-\(\sqrt{3}\)cũng là nghiệm của phương trình
Tìm một đa thức có dạng: \(ax^4+bx^3+cx^2+dx+e\) \(\left(a\ne0\right)\) và các hệ số nguyên và nhận nghiệm là \(x=1+\sqrt{2}-\sqrt{3}\)
chứng minh rằng tồn tại một pt có các hệ số hữu tỉ nhận một trong các nghiệm là \(\sqrt{2}+\sqrt{3}\)
Cho pt :\(x^4-16x^2+32=0\)
CMR x=\(\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\) là 1 nghiệm của pt
b1:tìm nghiệm nguyên của phương trình sau: \(5x^2+2y^2+10x+4y=6\)
b2: cho số thực A=\(\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)
có là 1 nghiệm của pt \(\left(x^2-8\right)=32\)ko
lập pt bậc hai với hệ số nguyên có 2 nghiệm x1=\(\sqrt{11-5\sqrt{2}}\)và x2=\(\sqrt{11+6\sqrt{2}}\)
cmr nếu p là số nguyên tố a là số nguyên dương sao cho \(1+2\sqrt{a}\)không phải là số nguyên tố thì pt \(x^2-2\sqrt{a}x-p=0\)không có no hữu tỉ
1,Giải hệ \(\hept{\begin{cases}\sqrt{x^2+x+2}-\sqrt{x+y}=y\\\sqrt{x+y}=x-y+1\end{cases}}\)
2,Biết pt \(x^2-3x+1=0\)có nghiệm x=a
Hãy tìm 1 giá trị b nguyên để pt \(x^{16}-bx^8+1=0\)có nghiệm x = a
3, Cho hệ \(\left(I\right)\hept{\begin{cases}x+2y=m+3\\2x-3y=m\end{cases}}\)(m là tham số)
a, giải hệ với m = 1
b, tìm m để hệ (I) có nghiệm (x;y) sao cho \(P=98\left(x^2+y^2\right)+4m\)đạt GTNN
Cho hệ pt sau: \(\hept{\begin{cases}2x+my=1\\mx+2y=1\end{cases}}\)
1) Tìm m nguyên để hệ có nghiệm duy nhất (x;y) với x,y là các số nguyên.
2) Chứng minh khi hệ có nghiệm duy nhất thì M(x;y) luôn chạy trên một đường thẳng cố định
3) Xác định m để M thuộc đường tròn có tâm là gốc tọa độ và bán kính bằng \(\frac{\sqrt{2}}{2}\)