(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
=>\(\left(a+d\right)^2-\left(b+c\right)^2=\left(a-d\right)^2-\left(b-c\right)^2\)
=>\(\left(a+d\right)^2-\left(a-d\right)^2=\left(b+c\right)^2-\left(b-c\right)^2\)
=>(a+d-a+d)(a+d+a-d)=(b+c-b+c)(b+c+b-c)
=>\(2d\cdot2a=2c\cdot2b\)
=>ad=bc
=>\(\frac{a}{c}=\frac{b}{d}\)