\(-x^2+4x-5\)
\(=\left(-x+4x-4\right)-1\)
\(=-\left(x-2\right)^2-1\le-1\)
Vì -1<0
Nên \(-x^2+4x-5< 0\) với mọi x
a ,\(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\)
\(\Leftrightarrow a\left(a+1\right)\left(a+2\right)⋮6\)
Vì a(a+1) là 2 số nguyên liên tiếp nên chia hết cho 2
Vì a (a+1)(a+2) là 3 số nguyên liên tiêp nên chia hết cho 3
Mà 2 và 3 là 2 số nguyên tố cùng nhau
\(\Rightarrow a\left(a+1\right)\left(a+2\right)⋮6\) hay \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\) (đpcm)
b,\(a\left(2a-3\right)-2a\left(a+1\right)⋮5\)
\(\Leftrightarrow2a^2-3a-2a^2-2a⋮5\)
\(\Leftrightarrow-5a⋮5\) (đúng)
Vậy \(a\left(2a-3\right)-2a\left(a+1\right)⋮5\)
c,\(x^2+2x+2>0\forall x\)
Ta có \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)
Vậy \(x^2+2x+2>0\forall x\)
d,\(x^2-x+1>0\forall x\)
Ta có: \(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)
Vậy \(x^2-x+1>0\forall x\)
e,\(-x^2+4x-5< 0\forall x\)
Ta có \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2-1\le-1< 0\forall x\)
Vậy \(-x^2+4x-5< 0\forall x\)
\(a^2\left(a+1\right)+2a\left(a+1\right)\)
\(=a\left(a+1\right)\left(a+2\right)\)
Vì \(a,a+1,a+2\) là 3 số nguyên liên tiếp
Nên \(a\left(a+1\right)\left(a+2\right)⋮6\)
Vậy \(a^2\left(a+1\right)+2a\left(a+1\right)\) luôn chia hết cho 6 với mọi số nguyên a
\(a\left(2a-3\right)-2a\left(a+1\right)\)
\(=2a^2-3a-2a^2-2a\)
\(=-3a-2a=-a\left(3+2\right)=-5a⋮5\)
Vậy \(a\left(2a-3\right)-2a\left(a+1\right)\) luôn chia hết cho 5 với mọi số nguyên a
\(x^2+2x+2\)
\(=\left(x+1\right)^2+1\ge1\)
Vì 1>0, do đó:
\(\left(x+1\right)^2+1>0\) hay \(x^2+2x+2>0\) với mọi x
\(x^2-x+1\)
\(=x^2-2.\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vì \(\dfrac{3}{4}>0\)
Nên \(x^2-x+1>0\) với mọi x
c/ x2+2x+2>0 với mọi x
Ta có: x2+2x+2 = x2 + 2x +1+1
=( x2 +2x +1) +1
=(x2 + 2.x.1 + 12 )+1
=(x+1)2 +1
Vì (x+1)2 ≥ 0
⇒ (x+1)2 +1 > 0
Vậy x2 +2x+2 >0 với mọi x