Ta có : \(VP=a^3-b^3-3ab\left(a-b\right)=a^3-b^3-3a^2b+3ab^2=\left(a-b\right)^3\)
=> \(\left(a-b\right)^3=a^3-b^3-3ab\left(a-b\right)\)
Vậy \(\left(a-b\right)^3=a^3-b^3-3ab\left(a-b\right)\).
Ta có : \(VP=a^3-b^3-3ab\left(a-b\right)=a^3-b^3-3a^2b+3ab^2=\left(a-b\right)^3\)
=> \(\left(a-b\right)^3=a^3-b^3-3ab\left(a-b\right)\)
Vậy \(\left(a-b\right)^3=a^3-b^3-3ab\left(a-b\right)\).
chứng minh đẳng thức: \(a^3-b^3=\left(a-b^3\right)+\left(a-b\right)^3+3ab\left(a-b\right)\)
CMR các biểu thức sau bằng nhau :
1 ) \(\left(a+b\right)^3\) và \(a^3+3a^2b+3ab^2+b^3\)
2 ) \(\left(a-b\right)^3\) và \(a^3-3a^2b+3ab^2-b^3\)
Chứng minh các đẳng thức sau:
a) \(\left(a+b+c\right)^2+\left(b+c-a\right)^2+\left(a+c-b\right)^2+\left(a+b-c\right)^2=4\left(a^2+b^2+c^2\right)\)
b) \(\left(a+b+c\right)^3-\left(b+c-a\right)^3-\left(c+a-b\right)^3-\left(a+b-c\right)^3=24abc\)
Chứng minh hằng đẳng thức :
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
cho a + b =1.
Tính \(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
Chứng minh rằng :
a) \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)=2a^3\)
b) \(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
c) \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
b) Cho \(x-y=1\), tính \(B=x^3-y^3-3xy\)
c) Cho \(x-y=2\), tính \(C=2\left(x^3-y^3\right)-3\left(x+y\right)^2\)
d) Cho \(a+b=1\), tính \(D=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
Chứng minh hằng đẳng thức :
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Chứng minh các đẳng thức sau
a) \(\left(2x+3\right)\left(4x^2+9\right)\left(2x-3\right)=16x^4-81\)
b) \(\left(a+b\right)^2+2\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2=4a^2\)