Bunyakovsky:
\(\sqrt{a+b}+\sqrt{a-b}\le\sqrt{2.2a}=2\sqrt{a}\)
Bunyakovsky:
\(\sqrt{a+b}+\sqrt{a-b}\le\sqrt{2.2a}=2\sqrt{a}\)
a)\(\sqrt{4\left(a-3\right)^2}vớia\ge3\)
b)\(\sqrt{a^2\left(a+1\right)^2}vớia>0\)
c)\(\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}vớia< 0,b\ne0\)
Rút gọn biểu thức:
\(\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}vớia\ge0\)\(\sqrt{5a}.\sqrt{45a}-3avớia\ge0\)\(4\sqrt{16a^6}-6a^3\rightarrow kq2TH\)\(\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^4}\)\(\sqrt{\frac{27.\left(a-3\right)^2}{48}}vớia< 3\)\(\frac{\sqrt{63y^3}}{\sqrt{7y}}vớiy>0\)\(\frac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^2}}vớia< 0,b\ne0\)\(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^3}+\sqrt{b^3}}{a-b}\left(a\ge0;b\ge0;a\ne b\right)\)\(\frac{2a+\sqrt{ab}-3b}{2a-5\sqrt{ab}+3b}\left(a,b\ge0;4a\ne9b\right)\)cho a,b,c>0 cm \(\dfrac{a+b}{\sqrt{c}}\) +\(\dfrac{b+c}{\sqrt{a}}\) +\(\dfrac{c+a}{\sqrt{b}}\)≥2(\(\sqrt{a}+\sqrt{b}+\sqrt{c}\))
bài 1: rút gọn
a, \(\sqrt{\frac{2}{3}}-\sqrt{24}+2\sqrt{\frac{3}{8}}+\sqrt{\frac{1}{6}}\)
b, \(\sqrt{\frac{2}{2-\sqrt{3}}}-\sqrt{\frac{2}{2+\sqrt{3}}}\)
c, \(2\sqrt{a}-\frac{5}{a}\sqrt{9a^3}+a\sqrt{\frac{4}{a}}-\frac{2}{a^2}\sqrt{25a^5}\left(vớia>0\right)\)
Rút gọn rồi tính giá trị của biểu thức
\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}\div\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}vớia=7,25;b=3,25\)
\(\frac{a-b}{\sqrt{a\times\left(a+2\times b\right)+b^2}}\div\sqrt{\frac{\left(a-b\right)^2}{a\times\left(a+b\right)}}vớia>b>0và\frac{a}{b}=\frac{9}{7}\)
\(\frac{x-1}{\sqrt{y}-1}\times\sqrt{\frac{\left(y-2\times\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}vớix=\frac{-1}{2};y=121\); giúp mk vs
\(\sqrt{10-2\sqrt{21}}=\sqrt{a}-\sqrt{b},vớia,b\in Z,thìa-b=\)
\(\dfrac{\sqrt{45ab^2}}{\sqrt{20a}}vớia>0,b>0\)
Cho a,b,c>0 và abc=1. CM: \(\frac{\sqrt{a}}{2+b\sqrt{a}}+\frac{\sqrt{b}}{2+c\sqrt{b}}+\frac{\sqrt{c}}{2+a\sqrt{c}}\ge1\)
a) cho\(a>c,b>c,c>o.\) \(CM:\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
b) Cho \(a>0,b>0\). \(Cm:\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt{\sqrt{ab}}\)