chứng minh với mọi x,y khác 0 luôn có x^4+y^4< hoặc = x^6/y^2+y^6/x^2
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
a)Tìm x,y,z biết :
\(\left\{{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2=6\\x^3+y^3+z^3=6\end{matrix}\right.\)
b)Tìm các số nguyên x,y t/m:
2x2+\(\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\) sao cho tích x.y có GTLN
c)Cho a+b+c=0 và a2+b2+c2=14. Tính GT của bt M=a4+b4+c4
1) Cho x+y=a, x2+y2=b, x3+y3=c
C/m a3-3ab+2c=0
2)Cho x2+y2=1
Tính 2(x6+y6)-3(x4+y4)
1/ Cho x, y, z khác 0 và xy + yz + zx = 0.
Tính S= (y+z)/x + (z+x)/y + (x+y)/z
2/ Cho x= y+1. C/m (x + y)(x2 + y2)(x4 + y4)= (x8 - y8)
3/ a) C/m n4+2n3-n2-2n chia hết cho 24 với mọi n thuộc Z
b) Cho a+b= 5 và ab= 6. Tính (a - b)2013
4/ C/m phân số sau tối giản với mọi n: (3n+1)/(5n+2)
BÀi 1 cho x + y = a , x^2 + y^2 = b , x^3 + y^3 = c
CM a^3 -3ab +2c=0
Bài 2 Cho x^2 + y^2 =1
Tính 2(x^6 + y^6) - 3(x^4 +y^4)
giải các phương trình
1/ y = 21/y + 4
2/ y(y + 2)
3/ y^2 - 5y +4 = 0
4/ x^2 - 4x + 6 = 21/x^2 - 4x +10
5/ x(x + 2)(x^2 + 2x + 2) = 15
6/ x^4 - 5x^2 +4 =0
C/m rằng : (x^2+y^2+z^2)^2=2(x^4+y^4+z^4) với x+y+z=0
X/6-Y/2=0, X/4-Y/2-10=0. Tìm x,y