Nêu các cách chứng minh BĐT Nesbitt.
BĐT Nesbitt là một BĐT khá quen thuộc trong các bài toán BĐT,chúng ta hay tìm những lời giải cho BĐT này nhé!
Đề: Cho a,b,c>0.CMR \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Cách 1:
Thật vậy,ta có: \(VT=\frac{a^2}{a\left(b+c\right)}+\frac{b^2}{b\left(c+a\right)}+\frac{c^2}{c\left(a+b\right)}\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{2.\frac{\left(a+b+c\right)^2}{3}}=\frac{1}{\frac{2}{3}}.1=\frac{3}{2}^{\left(đpcm\right)}\)
Cách 2:
Ta có: BĐT \(\Leftrightarrow\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\ge\frac{9}{2}\)
\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)
\(\Leftrightarrow\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)
Áp dụng BĐT AM-GM cho biểu thức trong ngoặc ta có đpcm.
Mọi người hãy cùng tìm thêm các lời giải khác nhé!
(Nghi binh 27/09)
Bài 1: Cho a,b,c>0. Chứng minh rằng \(\frac{a^3+b^3+c^3}{abc}+\frac{9\left(ab+bc+ca\right)}{a^2+b^2+c^2}\ge12\)
Bài 2: Cho a,b,c>0. Chứng minh rằng: \(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\ge16\)
Mình thấy hai bài trên phải vận dụng linh hoạt các hđt và các bđt đã biết.
Bonus thêm bài: Cho a,b,c>0. Chứng minh rằng:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\ge2\)
Bài này khó hơn cả vì bđt đã biết cần dùng nó khá khó nhớ.
Cho a,b,c đôi một khác nhau. CMR: \(\frac{\left(a+b\right)^2}{\left(a-b\right)^2}+\frac{\left(b+c\right)^2}{\left(b-c\right)^2}+\frac{\left(c+a\right)^2}{\left(c-a\right)^2}\ge2\)
Cho a, b, c là các số thực dương bất kì. Chứng minh rằng:
\(\frac{a^2}{\left(b+c\right)^2}+\frac{b^2}{\left(c+a\right)^2}+\frac{c^2}{\left(a+b\right)^2}+\frac{10abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2.\)
dễ cm \(\frac{9\left(a+b\right)\left(b+c\right)\left(c+a\right)}{4\left(ab+bc+ca\right)}\ge2\left(a+b+c\right)\)
\(2\sqrt{a^2-ab+b^2}=2\sqrt{\left(\frac{a^2}{b}-a+b\right)b}\le a^2-a+2b\)
từ đó bđt cần cm <=> \(a+b+c\ge ab+bc+ca\)
lại có \(ab+bc+ca+abc\le4\)
\(\Leftrightarrow\left(a+2\right)\left(b+2\right)\left(c+2\right)\le\left(a+2\right)\left(b+2\right)+...\)
\(\Leftrightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\ge1\)
\(\Leftrightarrow\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\le1\)
\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(a+b+c\right)}\le\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\le1\)
\(\Rightarrow a+b+c\ge ab+bc+ca\)
=>Q.E.D
bđt<=>\(S_a\left(a-b\right)^2+S_b\left(b-c\right)^2+S_c\left(c-a\right)^2\ge0\)
with \(S_a=\frac{1}{2\left(a^2+b^2\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(S_b=\frac{1}{2\left(b^2+c^2\right)}-\frac{a}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(S_c=\frac{1}{2\left(c^2+a^2\right)}-\frac{b}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
cần cm \(S_a+S_c;S_b+S_c>0\)
lại có:\(S_a+S_c=\frac{1}{2}\left(\frac{1}{a^2+b^2}+\frac{1}{c^2+a^2}\right)-\frac{1}{\left(a+b\right)\left(c+a\right)}\)
\(>\frac{1}{2}\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(c+a\right)^2}\right)-\frac{1}{\left(a+b\right)\left(c+a\right)}>0\)
cmtt=>q.e.d
cho 3 số a,b,c đôi 1 khác nhau cm
\(\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{\left(b-c\right)}\)+\(\frac{\left(c+a\right)^2}{\left(c-a\right)}\ge2\)
Cho a, b, c đôi một khác nhau. Chứng minh \(^{\frac{a^2}{\left(b-c\right)^2}+\frac{b^2}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\ge2}\)
Cho a,b,c đôi một khác nhau. CMR:
\(\frac{a^2}{\left(b-c\right)^2}+\frac{b^2}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\ge2\)